
Vol.: (0123456789)
1 3

Landsc Ecol (2023) 38:3985–3998 
https://doi.org/10.1007/s10980-023-01768-x

RESEARCH ARTICLE

Attributing interannual variability of net ecosystem 
exchange to modeled ecological processes in forested 
wetlands of contrasting stand age

Jon M. Wells · Maricar Aguilos · Xin Huang · Yuan Gao · Enqing Hou ·  
Wenjuan Huang · Cuijuan Liao · Lin Lin · Ruiying Zhao · Han Qiu ·  
Keanan Allen · John King · Asko Noormets · Lifen Jiang · Yiqi Luo

Received: 28 September 2022 / Accepted: 26 August 2023 / Published online: 8 September 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract The drivers of interannual variability 
(IAV) of net ecosystem exchange (NEE) in forested 
wetlands are poorly understood, making it difficult 
to predict changes in atmospheric fluxes in response 
to land use and climate change. Similarly, these eco-
systems demonstrate dynamic physiological and 
phenological responses to climate over time yet are 
typically modeled using static parameters that rep-
resent unchanging ecological conditions. Though 

static first-order ecosystem models are informa-
tive, they fundamentally lack the ability to represent 
dynamic annual changes in ecological processes that 
may drive IAV of NEE through time. We aimed to 
improve understanding of how forested wetlands 
dynamically respond to climate and which key eco-
logical processes may contribute to IAV of NEE. 
Simultaneously, we aimed to develop tools to evalu-
ate dynamically parameterized process based first-
order ecosystem models. To achieve these objec-
tives, long-term ecological data were fused with the 
Total Ecosystem (TECO) model in three loblolly 
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pine plantations and a bottomland hardwood forest 
of contrasting stand age in wetland areas of the lower 
coastal plain of North Carolina. Variance decomposi-
tion was used to assess changes in large-scale ecosys-
tem drivers. To investigate individual processes, both 
static and dynamic data-assimilation were conducted 
to simulate time–invariant and time–varying ecologi-
cal response. Anomalies in dynamic ecosystem pro-
cess response were correlated with NEE anomalies 
to attribute IAV of NEE to underlying process-based 
mechanisms that may drive annual changes in NEE 
across stand age and sites. Assessment of large-scale 
drivers of IAV of NEE across sites demonstrated that 
maximum carbon uptake (MCU) dominated IAV of 
NEE in the mature pine plantation. These large-scale 
NEE signals were further parsed into ecological pro-
cesses in the TECO model, where process anomaly 
correlation showed that slight variations in root 
maintenance respiration and woody biomass turno-
ver rates may be underlying drivers of IAV of MCU 
and subsequently NEE. However, in the young pine 
plantations and bottomland hardwood forest IAV of 
NEE was not dominated by MCU. In contrast, IAV 
of NEE in young plantations was influenced most by 
annual changes in maximum carbon release (MCR) 
and carbon uptake period (CUP), while IAV of NEE 
in the bottomland hardwood forest was dominated 
by CUP. These results demonstrate that dynamic 
data assimilation (DA), variance decomposition, and 
process anomaly correlation are investigative and 
diagnostic tools for process-based models, though 
maximum GPP was systematically underestimated 
by models across sites. Despite problems with peak 
GPP representation, anomaly correlation between 
ecological processes and IAV of NEE allowed inves-
tigation of the specific ecological drivers of annual 
variability in ecosystem-level carbon exchange. As 
ecosystems show dynamic physiological and pheno-
logical properties through time, it may be important 
to allow models to have dynamic/time–varying eco-
logical responses, especially if the root causes of IAV 
of NEE are to be attributed to ecological processes in 
process-based models.

Keywords Data assimilation · Ecological 
modeling · Forested wetlands · Interannual 
variability · Managed forests · Net ecosystem 
exchange

Introduction

At the global scale, interannual variability (IAV) in 
the enrichment of atmospheric carbon dioxide  (CO2) 
has been attributed primarily to IAV of net ecosystem 
exchange (NEE) in the terrestrial carbon (C) cycle, 
and thus to changes in the size of the terrestrial C sink 
(Le Quéré et  al. 2018). Small annual imbalances in 
ecosystem-scale gross primary productivity (GPP) 
and total ecosystem respiration (RE) create annual 
variability in the size and direction of NEE, and sub-
sequently determine land C sink or source capacity. 
Though several climate factors have been reported to 
have dominant control of IAV of NEE, including solar 
radiation (Ichii et al. 2005), precipitation (Jung et al. 
2017; Poulter et  al. 2014), and temperature (Wang 
et al. 2014), the ecological mechanisms affecting IAV 
of NEE are poorly understood. Overall, despite a lack 
of attribution to individual ecological processes, IAV 
of NEE is expected to be predominantly controlled by 
ecological factors compared to direct climate effects 
(Shao et al. 2015).

Many large-scale ecological factors have been 
investigated as important controls of IAV of NEE. 
For example, 90% of IAV of GPP can be explained 
in temperate and boreal ecosystems by the product 
of maximum daily GPP  (GPPmax) and growing sea-
son length (Xia et al. 2015; Zhou et al. 2016), while 
 GPPmax dominated IAV of GPP over mid and high 
latitudes of North America at the ecosystem and 
regional scales (Zhou et  al. 2017). Similarly, exten-
sions of the net carbon uptake period annually may 
lead to larger net land C sink capacity (Churkina 
et al. 2005; Dragoni et al. 2011), with effects poten-
tially greater in water-limited systems experiencing 
increased precipitation (Poulter et  al. 2014; Ahl-
ström et  al. 2015;). Further, increases in maximum 
net C uptake tend to increase the land C sink while 
increases in maximum net C release tend to reduce 
the land C sink (Zscheischler et  al. 2016; Fu et  al. 
2017). However, these large-scale factors represent 
grouped effects of many phenological and physiologi-
cal processes operating at the ecosystem-scale, and 
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to our knowledge no analysis has parsed IAV of NEE 
to specific ecological processes within process-based 
models.

In wetlands specifically, ecological processes 
that drive IAV of NEE are uncertain, though it has 
been established that stand age influences C dynam-
ics (King et al. 1999; Pregitzer and Euskirchen 2004 
Magnani et  al. 2007) with NEE differences between 
forests often proportional to differences in stand age 
(Noormets et al. 2007; Schwalm et al. 2007; Mkhab-
ela et  al. 2009;). As a large component of the ter-
restrial C cycle, wetland ecosystems perform unique 
biogeochemical functions (Chmura et  al. 2003), are 
among the most economically valued and productive 
ecosystems globally (Moreno-Mateos et  al. 2012), 
and face multiple anthropogenic pressures (Day et al. 
2008; White and Kaplan 2017). Wetlands are also 
important C stores under threat of extreme weather 
events, sea level rise and climate change (Miao et al. 
2017), thus identifying drivers of IAV of NEE that 
can be targeted by forest management or ecological 
restoration activities may be important to mitigate net 
C release in these ecosystems. To assess ecosystem 
trajectories in these regions and parse the effects of 
changing climate, land use and stand development, 
eddy covariance research towers were previously 
established in three managed loblolly pine plantations 
and a natural mixed hardwood forest in the lower 
coastal plain of North Carolina (Aguilos et al. 2020, 
2021; Domec et  al. 2015; Noormets et  al. 2010). 
These tower-based studies allow the investigation of 
several key aspects of landscape ecology, including 
landscape history and legacy effects in the transition 
from bog hardwood forests to managed loblolly pine 
plantations, as well as investigation of mechanisms 
and ecological impacts of land use change.

To explore attribution of IAV of NEE to potential 
ecological drivers in these forested wetland ecosys-
tems, especially to individual ecological processes, 
we investigated two data assimilation techniques 
across four forested wetland sites of contrasting stand 
age and community composition. Using the Total 
Ecosystem (TECO) model (Weng and Luo 2008), we 
conducted data-model fusion by static and dynamic 
data assimilation (DA) to create model simulations 
that exhibit time–invariant and time–varying eco-
logical responses, respectively. Model simulations of 
NEE from both static and dynamic model parameteri-
zations were decomposed following Fu et al. (2019), 

to parse large-scale ecosystem effects that may be 
driving differences in IAV of NEE across stand age. 
We further correlate annual anomalies of modeled 
ecological processes to annual NEE anomalies at each 
site to delve deeper into specific ecosystem processes 
that may drive IAV of NEE. As ecosystem proper-
ties are expected to change dynamically through 
time (Luo and Schuur 2020), we hypothesized that 
time–varying model parameterization would improve 
data-model agreement. We also expect that by creat-
ing models that allow ecological properties to vary 
inter-annually that we could correlate the divergence 
of ecological properties and NEE from their respec-
tive long-term means to attribute IAV of NEE to 
individual ecological processes. In terms of land-
scape ecology, these approaches represent innovative 
methods in landscape analysis and modeling, with the 
aim of developing better tools to assess accuracy and 
uncertainty of tower-based landscape studies along-
side attribution of ecological processes to ecosystem 
change.

Methods

Study area and data collection

Eddy-covariance towers were established at four 
long-term experimental sites to study both man-
aged and unmanaged forested wetlands in the south-
ern U.S. lowlands of the North Carolina coast, from 
2005 to present (Aguilos et  al. 2020, 2021; Miao 
et al. 2017; Noormets et al. 2012). In this study, we 
modeled two young loblolly pine plantations  (YP2-7, 
 YP2-8), one mature plantation (MP), and one bot-
tom-land hardwood forest (BHF) using long-term 
eddy-covariance and ground-based measurements 
from previous work (Fig.  1). As ecosystems experi-
ence climate change, we expect changes in ecosys-
tem structure and function which may change carbon 
sink/source dynamics - especially the IAV of carbon 
exchanged with the atmosphere. To investigate IAV 
of NEE in these ecosystems, observed NEE fluxes 
were parsed into ecologically relevant ecosystem 
fluxes of GPP and RE using a webtool developed by 
the Max Planck Institute for Biogeochemistry named 
REddyProc (Wutzler et al. 2018). Though technically 
data products, GPP and RE were considered here as 
observations that were fused with the TECO model 
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through data assimilation. Other data, including 
aboveground biomass, root biomass, coarse woody 
debris, and litterfall are described elsewhere (Aguilos 
et al. 2020, 2021) and were used during model setup 
and parameterization.

Ecological model

The process-based terrestrial ecosystem (TECO) 
model, described by Weng and Luo (2008), was used 
to investigate IAV of NEE across forested ecosystems 
of contrasting stand age and community composi-
tion. Briefly, TECO has four major components that 
include canopy photosynthesis, soil water dynam-
ics, plant growth (allocation and phenology) and soil 
carbon transfers. Canopy photosynthesis is simulated 
using a multi-layer process-based model, evolved 
from Wang and Leuning (1998), that simulates trans-
mission of radiation through the canopy using Beer’s 
law and divides foliage into sunlit and shaded leaves. 

Leaf photosynthesis is simulated using the Farquhar 
photosynthesis model (Farquhar et al. 1980) and the 
Ball-Berry model of stomatal conductance (Ball et al. 
1987). To capture diurnal and seasonal ecosystem 
dynamics, the canopy photosynthesis and soil water 
dynamic submodules are calculated on an hourly time 
step, while the plant growth and soil carbon submod-
ules are calculated on a daily time step. More detailed 
description of the TECO model can be found in Weng 
and Luo (2008).

Though model structure is important, the focus 
of this work was to investigate ecological processes 
that may influence changes in annual NEE. Thus, the 
methods conducted here can be applied to any pro-
cess-based model. To force the TECO model, specifi-
cally, seven observed meteorological variables were 
collected at each site, including air temperature, soil 
temperature, relative humidity, vapor pressure defi-
cit, air pressure, wind speed and shortwave incoming 
radiation. Meteorological observations, measured by 

Fig. 1  Locations of young plantations  (YP2 − 7,YP2 − 8), mature plantation (MP), and bottomland hardwood forest (BHF) sites that 
were modeled in this study [after Aguilos et al. (2021)]
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eddy-covariance towers at each site, were more than 
80% complete and were averaged to an hourly time-
step. Any remaining gaps in climate forcing were 
filled by adjacent tower measurements or by simple 
averaging of adjacent years in the rare case multiple 
towers were not functioning at any given time. In 
contrast, C flux measurements were averaged to daily 
values and fully gap-filled as described by Aguilos 
et al. (2020) for use in data assimilation.

Data assimilation

Data assimilation was accomplished using the TECO 
model and a Model Independent Data Assimilation 
(MIDA) framework (Huang et al. 2021). The MIDA 
framework allows abstraction of the carbon-cycle 
model from the Markov Chain Monte Carlo (MCMC) 
procedure, which uses Bayesian inference to estimate 
model parameters that maximize data-model agree-
ment. In this work GPP and RE were used as obser-
vational data for data-model fusion with initial car-
bon pool sizes estimated from C pool measurements 
at each site from Aguilos et  al. (2020). Data-model 
fusion of GPP and RE into the TECO model was also 
conducted at each site in two ways—by both static 
and dynamic DA. Static DA fused model outputs and 
data across all site-years, creating a single parameter 
set that exhibited static ecological properties through 
time. Dynamic DA fused model outputs and data 
annually, creating annual parameter sets that allowed 
the model to display dynamic changes in ecological 
properties on an annual basis. For both approaches 
the same parameters and initial values were used 
(Supplementary Table  S1). This approach was used 
to investigate how ecological responses may change 
each year and how changes in ecological response 
may relate to IAV of NEE.

Variance decomposition

Interannual variability of NEE was decomposed into 
phenological and physiological indicators following 
Fu et  al. (2019). The five indicators that affect IAV 
of NEE in this method include the uptake coefficient 
(alpha), release coefficient (beta), maximum carbon 
uptake (MCU), maximum carbon release (MCR) and 
carbon uptake period (CUP). Briefly, the alpha and 
beta coefficient describe the ratio of actual C uptake 
or release compared to theoretical maximum C sink 

or C source capacity, respectively. MCU and MCR 
describe the maximum positive and negative C flux, 
respectively, while CUP defines the number of days 
where net C uptake occurred. Mathematically, the 
annual NEE flux curve can be expressed as a function 
of these five indicators, the differentials of which can 
be estimated by anomalies of each indicator variable 
from their long-term mean. The relative contribution 
of each indicator to IAV of NEE is then calculated as 
the consistency of each indicator’s differential with 
respect to annual NEE anomaly over the period of 
interest. A more detailed description can be found in 
Fu et  al. (2019). Applying this variance decomposi-
tion to both the NEE observations and simulated NEE 
responses from the TECO model allowed diagnostics 
of both the comparative influence of indicators on 
IAV of NEE across forests of varying stand age and 
how well our simulations captured these large-scale 
effects.

Anomaly correlation

To further investigate individual ecological processes 
that may drive IAV of NEE, we correlated annual 
NEE anomalies to annual ecological process anoma-
lies in the TECO model when parameterized using 
dynamic DA. Dynamic DA allows ecological pro-
cesses to change annually in process-based models, 
like the TECO model, with annual changes in eco-
logical processes assessed in the same way as NEE 
anomalies—in comparison to their long-term mean. 
For example, root maintenance respiration is a param-
eter optimized in the TECO model during dynamic 
DA that represents an ecological process. By fusing 
data and models year-by-year, we can assess the long-
term mean of root maintenance respiration expected 
by the TECO model, and how root maintenance respi-
ration may change annually. The correlation between 
ecological process anomalies and simulated NEE 
anomalies then indicate what processes are changing 
with IAV of NEE as potential drivers in the TECO 
model. Positive correlation between ecological pro-
cesses and NEE anomalies indicated ecological pro-
cesses that increased with increased net ecosystem C 
loss, while negative correlations indicated ecological 
processes that increased with increased net ecosystem 
C storage.
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Results

Static vs. dynamic data assimilation

Compared to static parameterization, dynamic DA 
of the TECO model led to better agreement between 
simulated and observed ecosystem carbon fluxes at all 
sites for all carbon fluxes (Figs. 2 and 3). Static DA 
produced simulated NEE, GPP, and RE that showed 

0.13, 0.58, and 0.67  R2 agreement to observations 
when averaged across sites, respectively (Fig.  3). In 
contrast, simulated NEE, GPP, and RE from dynamic 
DA showed an average  R2 agreement to observations 
of 0.27, 0.68, and 0.81  R2 across sites, respectively. 
The average increase in  R2 by dynamic DA over static 
DA was 13.5%, 9.2%, and 14.3% for NEE, GPP and 
RE, respectively. Allowing annual changes in eco-
logical response was the most effective at improving 

Fig. 2  Data-model fusion of eddy-covariance carbon flux data 
and the TECO ecosystem model. Simulations were constrained 
statically using multi-year data (dark blue lines) and dynami-

cally by year (orange lines) compared to daily mean observa-
tions (light blue circles) at four sites  (YP2 − 8,  YP2 − 7, MP, 
BHF)
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Fig. 3  Correlation between simulated and observed ecosystem 
carbon fluxes at four sites  (YP2 − 8,  YP2 − 7, MP, BHF). In all 
cases dynamic data-assimilation (orange) improved agreement 

between simulated and observed carbon fluxes compared to 
static data-assimilation (dark blue), while RE was always bet-
ter represented than GPP by the TECO model
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simulated RE response across these forested wet-
land sites. This can be visualized by both the closer 
agreement between the daily flux simulations from 
dynamic DA and the rotation of the dynamic DA fit 
line towards the 1:1 line compared to static DA.

Across all sites, the TECO model was generally 
worse at simulating GPP compared to RE, largely 
due to the mismatch between observed and simulated 
peak GPP fluxes during the growing season. When 
comparing the highest observed daily flux compared 
to highest simulated daily flux, peak GPP was always 
underestimated by the simulations. On average, simu-
lations missed observed annual peak GPP by 32% and 
31% across all site-years for models parameterized 
by static and dynamic DA, respectively. Simulated 
peak RE was more accurate, and was both over and 
underestimated, missing annual peak RE observations 
across all site-years by an average of 19% and 23% 
after static and dynamic DA, respectively. Under-
estimation of peak C fluxes contributed to lower 
data-model agreement for NEE for simulations from 
both static and dynamic DA using the TECO model. 
Throughout the year, the combined effect of both 
GPP and RE data-model mismatch also showed over-
all suppression of simulated NEE maxima, resulting 
in general underestimation of maximum net ecosys-
tem uptake and loss. Despite systemic challenges in 
representing peak C fluxes, dynamic DA improved 
data-model agreement, most notably in the represen-
tation of RE and allowed investigation of inter-annual 
changes in ecological processes.

Variance decomposition

Partitioning variance of NEE following Fu et al. (2019) 
for both the observed data (Fig. 4a) and the compara-
tive contributions to IAV of NEE when simulated using 
static DA (Fig. 4b) and dynamic DA (Fig. 4c) showed 
large-scale drivers of ecosystem-level carbon fluxes 
and how well models captured these trends. Contribu-
tion of alpha, beta, MCU, MCR, and CUP show con-
trasting contributions to IAV of NEE across stand age 
and forest composition. The young loblolly plantations 
(Fig.  4a;  YP2 − 7,  YP2 − 8), which represent managed 
forest regrowth after disturbance (harvest and replant-
ing with 1  year seedlings), showed mixed contribu-
tions to IAV of NEE, generally dominated by MCR 
and CUP. In contrast, MP showed IAV of NEE domi-
nated by MCU, explaining 67% of IAV of NEE. The 

BHF, as the natural late-successional community in 
the region, showed 62% IAV of NEE influenced by 
CUP. Models showed mixed results in replicating these 
ecosystem-level drivers based on static vs. dynamic 
DA. Static DA, representing time–invariant ecological 
responses to climate drivers, showed better agreement 
to large-scale influences of IAV of NEE at the MP and 
BHF sites that had more consistent NEE through time 
(Fig.  4b). Dynamic DA, which represents time–vary-
ing ecological response, showed better agreement to 
observed drivers of IAV of NEE at the YP sites, where 
annual carbon fluxes were more variable (Fig. 4c).

Process anomaly correlation

Root maintenance respiration was the strongest 
positive correlate between modeled ecosystem pro-
cesses and NEE departures from the mean across all 
sites (i.e., increased root maintenance costs aligned 
with annual increases in net ecosystem C loss at all 
sites). In general, positive correlations were strong-
est between NEE anomalies and plant processes con-
trolling respiration and productivity, while negative 
correlations were strongest between NEE anomalies 
and soil/litter processes (Fig. 5). Increases in dead C 
pool turnover times, and the rate at which C entered 
slower moving pools, generally aligned with years 
where net C storage was greater than the mean. At 
the MP site, where NEE is dominated by high GPP 
and shows consistent net C uptake, models generated 
by dynamic DA showed that small annual variability 
in both the rate of woody biomass turnover and root 
maintenance respiration were the strongest potential 
drivers of IAV of NEE. At the YP and BHF sites, 
both of which experienced widespread disturbance 
(i.e., harvest at YP sites and hydrologic stress and 
increased tree mortality at BHF), processes strongly 
correlated to NEE anomalies were more numerous, 
suggesting that a confluence of factors may affect 
IAV of NEE at these sites.

Discussion

Dynamic data assimilation

The inability to perfectly simulate GPP and RE C 
fluxes is an ongoing difficulty for ecological and Earth 
System models. As NEE is the difference between 



3993Landsc Ecol (2023) 38:3985–3998 

1 3
Vol.: (0123456789)

GPP and RE, inaccuracies created while simulating 
either GPP or RE may lead to pronounced NEE data-
model mismatch. This can be attributed, in part, to 
uncertainties in observational data and model param-
eterization, simplifications in model representations 
and unknowns in terms of important or missing pro-
cesses within contrasting ecosystems. It has also been 

demonstrated that ecological processes may have 
a greater effect on C dynamics than direct climate 
impacts (Shao et  al. 2015), though whether this is 
due to important missing climate drivers or a lack of 
understanding with regard to indirect climate effects, 
is not established. Here we show that annual eco-
logical changes can increase data-model agreement, 

Fig. 4  Variance decom-
position of NEE at four 
sites  (YP2 − 8,  YP2 − 7, MP, 
BHF) using the observed 
NEE (a) and the differ-
ence of observed variance 
decomposition compared to 
variance decomposition of 
simulated NEE from static 
(b) and dynamic (c) data 
assimilation. Following Fu 
et al. (2019), NEE variance 
was decomposed into a 
carbon uptake coefficient 
(alpha), carbon release 
coefficient (beta), maximum 
carbon uptake rate (MCU), 
maximum carbon release 
rate (MCR) and carbon 
uptake period (CUP)
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allowing models to act more like the ecosystems they 
are simulating, without changing observational data, 
model structure, or any process-based model assump-
tions. Importantly, typical first-order ecological or 
earth system models do not allow for annual changes 

in parameterization, and thus ecological properties, 
thereby creating systems where IAV is driven exclu-
sively by climate variation. First-order kinetic models 
thus have difficulties recreating IAV of NEE, largely 
we expect due to static model parameterization (Luo 

Fig. 5  Correlation between annual NEE flux anomalies and 
ecosystem processes anomalies across stand age and sites. 
Only correlations above 50%, as an arbitrary cut off, are 
shown. Negative correlations relate to process response that 

increased with ecosystem C storage, while positive correlations 
relate to process response that increased with net ecosystem C 
loss to the atmosphere
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and Schuur 2020), which was the impetus behind 
investigating dynamic DA in these forested wetlands.

Despite increases in data-model agreement at all 
sites, and for all C fluxes from dynamic DA, consist-
ent underestimation of peak GPP shows that simu-
lating annual change in ecological processes is not a 
panacea. Changing processes within the GPP module 
to better represent peak GPP may be an important 
next step to improve fidelity of secondary analyses, 
though a separate research question. Here, our focus 
was to demonstrate the usefulness of variance decom-
position of observed and simulated NEE signals and 
further correlate modeled ecological processes to IAV 
of NEE. Comparing multiple models across regional 
to global scales would be another way to investigate 
systematic model errors and ecological processes that 
influence IAV of NEE in different ecoregions. Future 
work to integrate matrix model representations would 
also provide further model diagnostics to look deeper 
into model uncertainty and processes driving IAV of 
NEE.

Variance decomposition of large-scale ecological 
factors

Assessing the observed NEE signal in terms of large-
scale drivers of IAV of NEE across wetland forests 
of varying stand age, we found that, similar to the 
study from Fu et  al. (2019), that MCU dominated 
IAV of NEE at the MP site. However, in contrast, we 
also found that IAV of NEE at the YP and BHF sites 
was typically influenced most by CUP and MCR. 
This suggests that fluctuating soil carbon losses and 
changes in favorable growth days during the year, 
where GPP can outpace RE, contributed most to 
IAV of NEE during forest recovery after harvest and 
replanting at the YP sites. Taken together, variance 
decomposition of observed NEE suggests that mature 
pine plantations are insensitive to variability in cli-
mate, disturbance, or ecosystem responses throughout 
the year, but are influenced by variability during peak 
growing season that affects peak GPP. Whereas, both 
during regrowth from disturbance (YP) and at late-
successional community in the region (BHF), daily 
variability in climate and ecosystem responses influ-
ence IAV of NEE by changing the CUP, while MCR 
from soils after harvest were dominate in YP sites.

Patterns in observed NEE signals were not per-
fectly recreated in simulated NEE. Though both DA 

approaches simulated NEE sufficiently well to gen-
erally recreate ecosystem-level influences of IAV of 
NEE at certain sites, they also both tended to under 
and overestimate key influences. For example, both 
DA approaches created simulations that underes-
timated the contribution of MCU to IAV of NEE at 
the MP site compared to the observed NEE signal 
(Fig.  4). Models created using dynamic DA further 
overestimated the influence of alpha at the MP site, 
indicating that changes in the ratio between actual 
vs. hypothetical maximum uptake was the largest 
contributor to IAV of NEE, which does not align 
with observations. Despite challenges in replicating 
observed annual C flux patterns, our results demon-
strate how variance decomposition can be used as a 
benchmark for ecosystem models and their ability to 
reproduce ecosystem-level influences on IAV of NEE.

Process anomaly correlation

At the MP site, small increases in C loss through 
root maintenance respiration and small decreases in 
C loss from woody biomass turnover were indicated 
as the strongest correlates to IAV of NEE by process 
anomaly correlation, aligning with the large-scale 
assessment of the observed NEE signal by variance 
decomposition. We cannot say with certainty that 
root maintenance respiration and the turnover rate 
of woody biomass are the only individual ecological 
processes controlling IAV of NEE at the MP site, as 
repeating the procedure with other models, process-
based assumptions and parameterization could show 
contrasting outcomes (Luo and Schuur 2020). How-
ever, it is encouraging that the assessment of specific 
processes showed reduced root respiration and slower 
woody biomass turnover correlate with reduced 
NEE, while large-scale NEE assessment showed 
similarly that general carbon uptake dominated IAV 
of NEE. The correlations are bidirectional so that 
increased root respiration at the YP sites correlates 
with increased NEE and aligns with carbon release 
dominating IAV of NEE at these sites. By fusing 
data and models and allowing models to demonstrate 
dynamic ecology, we were able to take a first look 
into what individual ecological processes in process-
based models align with IAV of NEE. Though model 
identifiability issues remain, this approach allowed 
us to investigate what individual ecological pro-
cesses may be driving IAV of NEE based on current 



3996 Landsc Ecol (2023) 38:3985–3998

1 3
Vol:. (1234567890)

process-based understandings and if these modeled 
outcomes align with ecosystem observations and 
expectations.

Conclusions

This and other works have shown that capturing peak 
growing season GPP is an ongoing issue that con-
tributes to uncertainty in simulating NEE. We fur-
ther showed that allowing ecological responses to 
vary year-by-year, through dynamic annual param-
eterization, did not generally improve the simulation 
of peak GPP. Despite underestimation of peak GPP 
response, allowing time–varying ecosystem proper-
ties did improve data-model agreement at all sites 
for all carbon-flux responses. As ecosystems show 
dynamic physiological and phenological properties 
through time, and across space, it may be important 
to allow models to do the same, especially if the root 
causes of IAV of NEE are to be attributed to eco-
logical processes in process-based models. Here, we 
demonstrated that covariance allocation and process 
anomaly correlation can be used as tools to investi-
gate agreement between the shape of simulated vs. 
observed NEE responses, and the ecological pro-
cesses that may be driving IAV of NEE in process-
based models. In terms of landscape ecology and 
application, continuing to improve modeling capa-
bilities and assessment will play an important role in 
improving our understanding of the key ecological 
processes driving ecosystem change in a changing 
climate. Future work is still necessary to further con-
strain models with time–varying ecological responses 
and confirm if the identified ecological processes 
affecting IAV of NEE are realistic at these sites.
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