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Abstract
Anthropogenic nitrogen (N) loading alters soil ammonia-oxidizing archaea (AOA) and 
bacteria (AOB) abundances, likely leading to substantial changes in soil nitrification. 
However, the factors and mechanisms determining the responses of soil AOA:AOB 
and nitrification to N loading are still unclear, making it difficult to predict future 
changes in soil nitrification. Herein, we synthesize 68 field studies around the world to 
evaluate the impacts of N loading on soil ammonia oxidizers and nitrification. Across a 
wide range of biotic and abiotic factors, climate is the most important driver of the re-
sponses of AOA:AOB to N loading. Climate does not directly affect the N-stimulation 
of nitrification, but does so via climate-related shifts in AOA:AOB. Specifically, climate 
modulates the responses of AOA:AOB to N loading by affecting soil pH, N-availability 
and moisture. AOB play a dominant role in affecting nitrification in dry climates, while 
the impacts from AOA can exceed AOB in humid climates. Together, these results 
suggest that climate-related shifts in soil ammonia-oxidizing community maintain the 
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1  |  INTRODUC TION

Humans add approximately threefold reactive nitrogen (N) into ter-
restrial ecosystems compared with natural sources, potentially in-
creasing nitrification in soils (Bowles et al., 2018; Sutton et al., 2011). 
Nitrification is the key process controlling N losses, since it produces 
nitrate, which can be easily leached, or lost by denitrification as ni-
trous oxide and dinitrogen gas (Butterbach-Bahl et  al.,  2013). For 
example, the global rate of nitrous oxide emissions from N additions 
is estimated at about 7 Tg N year−1 (Tian et al., 2020). Nitrification 
is also affected by climatic conditions, such as temperature and pre-
cipitation (Bowles et al., 2018; Wang et al., 2014). However, the un-
derstanding of the responses of nitrification to enhanced N loading 
across climatic conditions is still incomplete.

Nitrification has long been considered to be initiated with the ox-
idation of ammonia to hydroxylamine by ammonia-oxidizing archaea 
(AOA) and bacteria (AOB) (Kuypers et al., 2018; Zhang et al., 2022). 
Nevertheless, AOA or AOB abundances have limited power to ex-
plain the responses of nitrification to N loading (Carey et al., 2016). 
Emerging studies suggest that the AOA:AOB ratio (an indicator of 
the structure of ammonia oxidizers) can be used to capture changes 
in nitrification (Aigle et al., 2020; Sims et al., 2012). However, the re-
sponses of soil AOA:AOB to N loading and the potential implications 
for nitrification remain unknown.

In addition to N loading characteristics (e.g., rate), soil factors 
may drive the responses of soil AOA:AOB to N loading, possibly 
altering nitrification. For instance, early studies report that the 
growth of ammonia oxidizers depends on soil factors including pH, 
N-availability and moisture. Prosser and Nicol (2012) show that AOA 
mostly are acidophilic and prefer to utilize slow-released ammonia 
from organic N mineralization, while AOB mainly are neutro-alka-
linophilic and favored by high-levels ammonia from external N load-
ings. Liao et al. (2022) show that AOB are more negatively affected 
by increasing soil moisture than AOA. Previous meta-analyses indi-
cate that N loading decreases soil pH, but this effect may vary with 
the factors like soil moisture and the N-source (Tian & Niu, 2015; 
Zhang et al., 2022). Therefore, the effects of N loading on AOA:AOB 
and nitrification may associate with soil factors, but global evidence 
is lacking.

Recent studies suggest that climatic conditions substantially 
alter microbial responses to N loading by affecting soil factors (Borer 
& Stevens,  2022; Greaver et  al.,  2016). For example, aridity index 
(the ratio of annual precipitation to annual potential evapotranspira-
tion; lower aridity index indicates more dry climate, whereas higher 

aridity index indicates more humid climate) significantly affects 
soil factors including pH, N-availability and moisture, which often 
drive microbial abundance and composition (Delgado-Baquerizo 
et  al.,  2013; Seneviratne et  al.,  2010; Slessarev et  al.,  2016). 
However, whether and how climatic conditions influence the effects 
of N loading on soil AOA:AOB and nitrification, and whether climatic 
impacts on AOA:AOB exert effects on nitrification remain unclear. 
These knowledge gaps limit our ability to predict N-induced changes 
in nitrification across climatic conditions, likely leading to over- or 
under-estimation of N losses (Bowles et al., 2018; Tian et al., 2020).

To explore the relative influence of soil factors, climatic con-
ditions and N loading characteristics on the responses of soil 
AOA:AOB and nitrification to N loading, we collected data on the 
effects of N loading on soil AOA:AOB and nitrification from 68 field 
studies worldwide (Figures S1 and S2). A broad range of potential 
predictors were also recorded, including climatic conditions, soil fac-
tors, N loading characteristics, etc. We then analyzed the data by 
using meta-forest analysis (Terrer et al., 2021), regression analysis, 
and structural equation modeling test (Moreno-Jiménez et al., 2019). 
This study was motivated by the following two fundamental ques-
tions: (1) what are the key drivers of the responses of AOA:AOB and 
nitrification to N loading; and (2) how do the responses of nitrifica-
tion link with the responses of AOA:AOB?

2  |  METHODS

2.1  |  Literature search

To make our results comparable to other meta-analyses of N load-
ing experiments, we focused only on potential nitrification as in ear-
lier meta-analyses (Carey et al., 2016; Zhang et al., 2022). By using 
Web of Science (webof​scien​ce.​com) and China National Knowledge 
Infrastructure (overs​ea.​cnki.​net), we searched the scientific litera-
ture evaluating the effects of N loading on soil ammonia oxidizers 
and/or potential nitrification. Relevant articles published before 
2022 were retrieved using two sets of search terms: (i) one for am-
monia oxidizers: (“nitrogen addition” OR “nitrogen amendment” OR 
“nitrogen enrichment” OR “nitrogen fertili*” OR “nitrogen deposi-
tion” OR “nitrogen load*”) AND (“soil” AND “gene*” AND “*PCR”) 
AND (“*amoA” OR “AOA” OR “AOB”); (ii) and a second for potential 
nitrification: (“nitrogen addition” OR “nitrogen amendment” OR “ni-
trogen enrichment” OR “nitrogen fertili*” OR “nitrogen deposition” 
OR “nitrogen load*”) AND (“soil” AND “nitrification”).

Natural Science Foundation of China, 
Grant/Award Number: 32130069; Nordic 
Committee of Agriculture and Food 
Research; Pioneer Center for Research in 
Sustainable Agricultural Futures (Land-
CRAFT), Grant/Award Number: P2

N-stimulation of nitrification, highlighting the importance of microbial community 
composition in mediating the responses of the soil N cycle to N loading.
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The articles were then selected according to the following cri-
teria: (i) soils were sampled from surface layers (<20 cm) under field 
conditions; (ii) both archaeal and bacterial amoA abundances were 
quantified by qPCR, and/or potential nitrification was estimated 
from the rate of nitrate or nitrite production during 24 h incubation 
under optimal conditions (Zhang et  al.,  2022); (iii) ambient and N 
loading treatments were applied for at least 1 year; (iv) mean val-
ues, standard deviations and replicate numbers could be acquired 
directly or indirectly. Observations disturbed by other experimen-
tal factors (e.g., irrigation, warming, precipitation, CO2 enrichment, 
nitrification inhibitors, etc.) were excluded (Horz et al., 2004). For 
multiyear experiments, data on the last measurements in the grow-
ing season were preferentially used (Zhang et al., 2022). A total of 68 
eligible studies were identified (Figures S1 and S2), of which 56 re-
ported on ammonia oxidizers, 43 reported on potential nitrification, 
and 31 covered both.

2.2  |  Data extraction

2.2.1  |  Response variables

Data were taken directly from tables and text, or extracted from 
figures using Grapher software (golde​nsoft​ware.​com). We obtained 
the ratios of AOA:AOB by using reported archaeal and bacterial 
amoA abundances. To explore linkages between potential nitrifica-
tion and AOA:AOB, we also gathered potential nitrification data if 
available. Within the 68 identified studies, there were 143 paired 
observations of AOA:AOB (Data  S1), 98 observations of potential 
nitrification (Data S2), and 67 observations covering both (Data S3).

2.2.2  |  Predictor variables

We documented potentially relevant environmental and experimen-
tal factors as predictor variables. (i) Location: latitude (°), elevation 
(m). (ii) Climate: aridity index, mean annual temperature (MAT, °C).  
(iii) Vegetation: aboveground biomass (AGB, g C m−2), ecosystem 
type (cropland, grassland or forest). (iv) Soil: pH, the ratio of C to 
N (C:N), available P (AP, mg kg soil−1), bulk density (BD, g soil cm−3), 
clay (%), volumetric moisture (%), and N-mineralization rate (mg kg 
soil−1 day−1). (v) N loading characteristics: rate (g N m−2 year−1), dura-
tion (year), form (urea, NH4NO3 or others), and amount of N applica-
tion (g N m−2). Because aridity index integrates the effects of rainfall 
and warming, it is generally considered as an integrator of climatic 
conditions (Garcia-Palacios et al., 2018). Based on aridity index, we 
grouped study sites to be located either in dry (aridity index <0.65) 
or humid (aridity index ≥0.65) climates. The cutoff of 0.65 was de-
fined by the United Nations Convention to Combat Desertification 
(Dudley & Alexander,  2017). Almost 30% of environmental data 
were not reported in the primary studies (Data S1–S3). We obtained 
these from various online databases: extracting location data from 
Google Earth (earth.​google.​com), climate data from WorldClim 

(Fick & Hijmans,  2017) and CGIAR-CSI (Zomer et  al.,  2022), veg-
etation data from ORNL DAAC (Spawn et al., 2020), and soil data 
from SoilGrids250m (Hengl et al., 2017), SoMo.ml (Orth, 2021), the 
soil N database (Elrys et al., 2022), and the soil P database (Yang 
et al., 2013).

2.3  |  Statistical analyses

2.3.1  |  Effect sizes

We assessed the effect of N loading on each response variable by 
calculating the natural logarithmic response ratio (lnR) of the N 
loading treatment relative to the ambient treatment, where lnR was 
weighted by the inverse of its variance (Chen et al., 2018; Hedges 
et  al.,  1999). Response ratios of AOA:AOB and potential nitrifica-
tion were marked as lnR(AOA:AOB) and lnR(Nitrification), respectively. The 
mean effect size (lnR) was estimated in a weighted mixed-effects 
model by using the R package metafor (Viechtbauer,  2010). Some 
studies contributed more than one paired observation, thus we con-
sidered “study” and “observation” as random factors. For the ease of 
interpretation, the mean effect size was transformed into percent-
age change, that is, 

(

elnR − 1

)

× 100%. The mean effect of N loading 
is considered significant at p < .05.

2.3.2  |  qPCR effectiveness and publication bias

The test of moderators in the R package metafor (Viechtbauer, 2010) 
was used to evaluate the impacts of primer selections and inhibi-
tion tests (Data S1) on response ratios of amoA abundances. The 
impact of methodological approaches is considered significant if 
p < .05 (Zhang et  al.,  2022). In addition, we assessed publication 
bias by two tests. Spearman's correlation test was used to test the 
correlation between individual effect sizes and the correspond-
ing variances. Publication bias is considered absent if Spearman's 
correlation is non-significant (Nerlekar & Veldman, 2020). We also 
used Rosenberg's fail-safe number (f) analysis. The dataset is con-
sidered unbiased if f is larger than 5n + 10, where n is the number 
of observations (Rosenberg, 2005). We did not detect any impact 
of methodological approaches nor publication bias in our dataset 
(Tables S1 and S2).

2.3.3  |  Variable importance

To identify the most important predictors of lnR(AOA:AOB) and 
lnR(Nitrification), we performed meta-forest analysis (Terrer et al., 2021). 
The meta-forest analysis is an adaptation of the random-forest al-
gorithm for meta-analysis: weighted bootstrap sampling is used 
to ensure that more precise studies exert greater influence in the 
model-building stage. These weights are based on random-ef-
fects, so that studies with smaller sampling variance have a larger 
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probability of being selected, but this advantage is diminished as the 
number of between-studies heterogeneity increases. Although se-
lecting a random subset of the features at each candidate split in the 
meta-forest analysis can help avoid overfitting and multicollinear-
ity, spatial autocorrelation is not accounted for in the meta-forest 
analysis due to computational limitations (Liang et  al.,  2022; van 
Lissa, 2020).

All potential predictors were included in the meta-forest model by 
using the R package metaforest (van Lissa, 2020). This model was run 
with 10,000 iterations, and was replicated 100 times by a recursive 
algorithm provided by the R package metafor (Viechtbauer, 2010). 
Predictors that reduced predictive performance (i.e., negative im-
portance) were dropped, while predictors that improved predictive 
performance (i.e., positive importance) were maintained. Model pa-
rameters were further optimized by using the train() function from 
the R package caret (Kuhn, 2008). We calculated tenfold cross-vali-
dated R2 values by using 75% of the dataset as training data and 25% 
for validation. The relative importance of each predictor was derived 
from the optimized model.

2.3.4  |  Empirical relationships

Meta-forest analysis identified aridity index as the most important 
predictor of lnR(AOA:AOB) and lnR(AOA:AOB) as the best predictor of 
lnR(Nitrification) (Figure 1). Regression analysis was used to assess the 
relationship between lnR(AOA:AOB) and aridity index. The optimal re-
gression model was selected by Bayesian information criterion (BIC; 
linear and quadratic models were considered). To further explore 
potential impacts of aridity index on nitrification, we assessed the 
relationships between lnR(Nitrification) and lnR(AOA:AOB), and between 
lnR(Nitrification) and aridity index. The interaction between aridity index 
and lnR(AOA:AOB) on lnR(Nitrification) was tested by regression analysis.

2.3.5  |  Structural equation modeling

Aridity index has been shown to substantially affect soil factors 
including pH, N-availability and moisture (Delgado-Baquerizo 
et  al.,  2013; Seneviratne et  al.,  2010; Slessarev et  al.,  2016), and 
these soil factors typically determine the niche of ammonia oxidiz-
ers (Liao et al., 2022; Prosser & Nicol, 2012). Based on this under-
standing, we built a structural equation modeling (Figure S3) to test 
the underlying mechanisms of aridity index in affecting lnR(AOA:AOB). 
Soil N-availability was indicated by N-mineralization rate and N load-
ing rate. We included a random effect based on the geographical 
distance, to remove confounding effects due to spatial autocorrela-
tion (Moreno-Jiménez et al., 2019). The performance of structural 
equation modeling was evaluated by chi-squared test, which is con-
sidered convergent if p > .05. Structural equation modeling was con-
ducted with the R package piecewiseSEM (Lefcheck, 2016).

2.3.6  |  Climate change projections

To understand how future climate change may impact lnR(AOA:AOB) 
and lnR(Nitrification), we accessed global mean aridity index from 2000 
to 2100 projected by the fifth Coupled Model Intercomparison 
Project (CMIP5) under the representative concentration path-
ways RCP4.5 and RCP8.5 (Huang et  al.,  2016). These projections 
of aridity index were used to simulate global mean lnR(AOA:AOB) and 
lnR(Nitrification) from 2000 to 2100 by scaling-up the observed rela-
tionships (lnR(AOA:AOB) vs. aridity index, and lnR(Nitrification) vs. arid-
ity index). The predict() function from the R package car (Fox & 
Weisberg,  2019) was run to simulate the predicted values (l̂nR) of 
lnR(AOA:AOB) and lnR(Nitrification) from 2000 to 2100. To ease interpre-
tation, the predicted values were reported as percentage change, 
that is, 

(

el̂nR − 1

)

× 100%.

F I G U R E  1 The most important 
predictors for the effects of N loading 
on AOA:AOB (lnR(AOA:AOB)) and potential 
nitrification (lnR(Nitrification)). (a) Relative 
importance of 17 predictors (N form was 
dropped due to negative importance) of 
lnR(AOA:AOB) derived from meta-forest 
model. (b) Relative importance of 18 
predictors (N form and latitude were 
dropped due to negative importance) of 
lnR(Nitrification) derived from meta-forest 
model. AGB, aboveground biomass; 
AOA, ammonia-oxidizing archaea; AOB, 
ammonia-oxidizing bacteria; AP, available 
phosphorus; BD, bulk density; C:N, the 
ratio of carbon to nitrogen; MAT, mean 
annual temperature.
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3  |  RESULTS

Across a wide range of environmental and experimental factors, 
aridity index was the most important predictor of lnR(AOA:AOB) 
(Figure 1a), where lnR(AOA:AOB) increased with aridity index (p < .001; 
Figure 2a). The mean effect of N loading on AOA:AOB differed be-
tween dry (aridity index <0.65) and humid (aridity index ≥0.65) cli-
mates (p < .001). Specifically, N loading reduced AOA:AOB by 67% in 
dry climates (p < .001), while this effect was not significant in humid 
climates (p = .165).

Structural equation modeling test showed that aridity index mod-
ulated the responses of AOA:AOB to N loading by affecting soil pH, 
N-mineralization rate, and soil moisture (Figure 3). The responses of 
AOA and AOB abundances to N loading differed in their relation-
ships to aridity index, soil pH, N-mineralization rate, soil moisture, 
and N loading rate (Figure  S5). The responses of AOA abundance 
increased with aridity index and N-mineralization rate, while the 
responses of AOB abundance decreased with aridity index and soil 
moisture, and increased with soil pH and N loading rate (p < .05).

Furthermore, lnR(AOA:AOB) was the best predictor of lnR(Nitrification) 
(Figure 1b), in which lnR(Nitrification) showed a U-shaped relationship 
with lnR(AOA:AOB) (p < .001; Figure 2b). However, aridity index had no 
direct influence on lnR(Nitrification) (p = .469; Figure 2c), with a similar 
N-stimulation of potential nitrification in both dry and humid cli-
mates (p = .804). Specifically, N loading increased potential nitrifica-
tion by 63% and 57% in dry (p < .001) and humid climates (p = .003), 

respectively. There was a strong interactive effect between aridity 
index and lnR(AOA:AOB) on lnR(Nitrification) (p < .001; Figure S4). The neg-
ative relationship between lnR(Nitrification) and lnR(AOA:AOB) was clear in 
dry climates (p = .023), but no clear relationship was found in humid 
climates (p = .742; Figure 2d).

By scaling-up our results using climate change projections of 
aridity index, we estimated that the global mean effect of N load-
ing on AOA:AOB will diminish by 5%–8% from 2000 to 2100 under 
RCP4.5 and RCP8.5 (Figure 4a), while the global mean responses of 
potential nitrification will be largely unaffected (Figure 4b).

4  |  DISCUSSION

4.1  |  Climate modulates the responses of ammonia 
oxidizers to N loading

Our results suggest that climate (indicated by aridity index; lower arid-
ity index indicates more dry climate, whereas higher aridity index in-
dicates more humid climate) primarily regulates the responses of soil 
AOA:AOB to N loading by affecting soil pH, N-availability and moisture 
(Figures 1a, 2a and 3). First, difference in soil pH between climates can 
induce selection pressures on AOA and AOB, thereby regulating the 
responses of AOA:AOB to N loading (Figure 3; Figure S5). Although 
N-induced changes in soil pH are not related to aridity index (Table S4), 
background soil pH (i.e., soil pH in ambient conditions) decreases 

F I G U R E  2 Climate indirectly 
modulates the effects of N loading on 
potential nitrification (lnR(Nitrification)) by 
affecting shifts in AOA:AOB (lnR(AOA:AOB)). 
(a) Relationship between lnR(AOA:AOB) 
and aridity index. (b) Relationship 
between lnR(Nitrification) and lnR(AOA:AOB). 
(c) Relationship between lnR(Nitrification) 
and aridity index. (d) Interaction between 
climate and lnR(AOA:AOB) on lnR(Nitrification). 
The sizes of empty dots are proportional 
to model weights. Difference between 
dry (aridity index <0.65) and humid 
(aridity index ≥0.65) climates was 
evaluated by Student's t-test. Error bars 
show 95% confidence intervals, and the 
corresponding numbers indicate sample 
sizes. Lower aridity index indicates 
more dry climate, whereas higher aridity 
index indicates more humid climate. 
AOA, ammonia-oxidizing archaea; AOB, 
ammonia-oxidizing bacteria.
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with aridity index (Figure  S5). Alkaline soils are more common in 
dry climates while acid soils are widely distributed in humid climates 
(Table  S3). Alkaline soils generally favor AOB growth, whereas acid 
soils can better facilitate AOA growth (Prosser & Nicol, 2012). This ex-
planation aligns with the positive correlation coefficient between the 
responses of AOB and soil pH, and the negative correlation coefficient 
between the responses of AOA and soil pH (Figure S5).

Second, climate to some extent affects soil N-availability, which 
in turn mediates the responses of AOA:AOB to N loading because 
of different N preferences between AOA and AOB (Figure  3; 
Figure S5). Nitrogen loading can stimulate soil N mineralization, and 
this effect increases with aridity index (Cheng et al., 2020). Soil N 
mineralization rate increases with aridity index (Figure S5), suggest-
ing that organic-derived N is more abundant in humid climates than 
in dry climates (Table S3). AOA mostly prefer to utilize slow-released 
ammonia from organic N mineralization, while AOB are mainly fa-
vored by high-level ammonia from external N loadings (Prosser & 
Nicol,  2012). Consistent with those preferences, the responses of 
AOA increase with N mineralization rate, and the responses of AOB 
increase with N loading rate (Figure S5).

Third, the responses of AOA:AOB to N loading partly depend 
on soil moisture, where soil moisture is often coupled with climate 
(Figure  3; Figure  S5). Nitrogen loading has no clear effect on soil 
moisture, and this effect is not affected by aridity index (Table S4). 
However, as aridity index increases, soil moisture rises accordingly 
(Figure  S5). AOB often decrease with rising soil moisture, while 
AOA generally increase or remain unchanged (Liao et al., 2022; Yue 
et  al.,  2021). This interpretation is in line with the negative rela-
tionship between the responses of AOB and soil moisture, and the 
non-significant relationship between the responses of AOA and soil 
moisture (Figure S5).

4.2  |  Shifts in ammonia oxidizers maintain the 
N-stimulation of nitrification

The U-shaped relationship between the responses of potential nitri-
fication and the responses of AOA:AOB under N loading (Figure 2b) 
suggests that the responses of nitrification vary nonlinearly with 
the responses of AOA:AOB. This finding is consistent with studies 

F I G U R E  3 Structural equation 
modeling test of how aridity index affects 
the responses of AOA:AOB to N loading 
(lnR(AOA:AOB)). Nitrogen-mineralization 
rate and N loading rate can reflect soil 
N-availability. The numbers on arrows 
indicate standardized path coefficients 
of structural equation modeling. Lower 
aridity index indicates more dry climate, 
whereas higher aridity index indicates 
more humid climate. AOA, ammonia-
oxidizing archaea; AOB, ammonia-
oxidizing bacteria.

F I G U R E  4 Potential changes in global mean effects of N loading on AOA:AOB and potential nitrification from 2000 to 2100 that are scaled-
up from the observations. Temporal variations in global mean effects of N loading on (a) AOA:AOB and (b) potential nitrification from 2000 to 
2100 under RCP4.5 and RCP8.5. Colored shading area indicates 95% confidence intervals, and gray shading area denotes the ranges of temporal 
variations. Lower aridity index indicates more dry climate, whereas higher aridity index indicates more humid climate. Notice difference in scales 
between panels. AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing bacteria; RCP, representative concentration pathway.
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showing that microbial function can shift with community structure 
across different climates (Chase et al., 2021; Crowther et al., 2019; 
Fernandez et al., 1999; Hoffmann & Sgro, 2011). On the other hand, 
N loading stimulates potential nitrification to a similar extent across 
different climates (Figure 2c), indicating that climate-related shifts 
in soil ammonia-oxidizing community maintain the N-stimulation of 
nitrification. Specifically, AOB play a dominant role in affecting ni-
trification in dry climates, while the impacts from AOA can exceed 
AOB in humid climates (Figure S6).

The structure–function relationship of soil ammonia-oxidizing 
community can be affected by environmental conditions (Zhang, 
Chen, et al., 2023). For example, we observe that climate alters the 
relationship between the responses of potential nitrification and the 
responses of AOA:AOB under N loading (Figure 2d). However, other 
factors (e.g., trait distributions within a community, species-spe-
cies interactions, evolutionary dynamics, and community assembly 
processes) may also affect the structure–function relationship of 
ammonia oxidizers (Nemergut et  al.,  2014). These factors may in-
teract with environmental conditions, adding uncertainty to future 
projections of nitrification. Therefore, further research is required to 
quantify these interactions.

4.3  |  Implications and potential uncertainties

We quantified the relationships among ammonia-oxidizing community 
structure, function, and environmental conditions, thereby advancing 
the understanding of the responses of ammonia oxidizers and nitrifi-
cation to N loading in three ways. (1) AOA:AOB is a better predictor 
of nitrification under N loading than either AOA or AOB abundances 
(Carey et al., 2016). (2) AOA:AOB exerts a significant influence on ni-
trification at the global scale, challenging the common assumption that 
microbial community structure controls function predominantly at the 
local scale (Schimel & Gulledge, 1998). (3) In addition to earlier identi-
fied key drivers (soil pH, N-availability and moisture) of ammonia oxi-
dizers (Liao et al., 2022; Prosser & Nicol, 2012), we offer new insights 
in terms of climatic impacts of ammonia oxidizers.

Furthermore, we inferred a persistent N-stimulation of po-
tential nitrification under future climate change scenarios despite 
clear shifts in AOA:AOB (Figure  4). However, key microbial traits 
(e.g., AOA:AOB and nitrification) are insufficiently considered in 
current ecosystem models, potentially leading to model uncer-
tainties (Crowther et  al.,  2019; Hawkes & Keitt,  2015; Nevison 
et al., 2022). For example, without considering shifts in AOA:AOB, 
the CLASSIC model (Asaadi & Arora, 2021) simulates a large increase 
in N-stimulation of nitrification under climate change. This result 
contradicts the finding of our meta-analysis, which suggests a stable 
N-stimulation. Hence, incorporating shifts in AOA:AOB into micro-
bial trait-based frameworks may help to simulate future changes in 
soil N cycling (Chen et al., 2023; Crowther et al., 2019).

A few potential limitations of our analyses should be noted. 
First, spatiotemporal variability may be underrepresented in our 
dataset. For example, there are unbalanced samples across climatic 

zones and different sampling years among studies. Covering un-
derrepresented areas (especially tropical and polar zones) in fu-
ture research projects will likely advance the understanding of 
microbial feedbacks to N loading. Second, missing data were im-
puted using some global databases, potentially introducing bias 
into our results. For instance, the ensemble models producing 
SoilGrids250m database explain 83% variation in observed soil pH 
(Hengl et al., 2017), and the unexplained 17% variation introduces 
some potential uncertainty into our results. Third, inherent model 
limitations may affect variable importance analysis and future pro-
jection. One example is that machine learning-based meta-forest 
analysis is data-hungry while our sample size is relatively small. 
Another example is that there are no observational data of the 
future period to validate the CMIP5 ensemble (Huang et al., 2016). 
Further development of global databases and mechanistic mod-
els may decrease these potential uncertainties. Fourth, although 
we revealed relationships among ammonia oxidizers, nitrification 
and climate under N loading, the acclimatization rates of differ-
ent guilds to climate change are still unclear. This challenge can 
be addressed through manipulative experiments (Hoffmann & 
Sgro, 2011). Fifth, the use of DNA-based methods and potential 
rates may only provide limited information of ammonia oxidizers 
and nitrification (Zhang, Chen, et al., 2023). The development and 
wider application of new techniques is therefore critical, such as 
in-situ methods measuring N-cycling genes and rates.

In summary, our work indicates that climate-related shifts in soil 
ammonia-oxidizing community maintain the N-stimulation of nitrifi-
cation, emphasizing the key role of climate in mediating the responses 
of ammonia oxidizers to N loading. Therefore, considering climate-re-
lated shifts of ammonia oxidizers in ecosystem models may improve 
predictions of soil N cycling under future climatic conditions.
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