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Responses of soil organic carbon to climate 
extremes under warming across global 
biomes

Mingming Wang    1,2, Shuai Zhang    1,2, Xiaowei Guo    1,2, Liujun Xiao    3, 
Yuanhe Yang    4, Yiqi Luo    5, Umakant Mishra6 & Zhongkui Luo    1,2 

The impact of more extreme climate conditions under global warming 
on soil organic carbon (SOC) dynamics remains unquantified. Here we 
estimate the response of SOC to climate extreme shifts under 1.5 °C 
warming by combining a space-for-time substitution approach and 
global SOC measurements (0–30 cm soil). Most extremes (22 out of 33 
assessed extreme types) exacerbate SOC loss under warming globally, 
but their effects vary among ecosystems. Only decreasing duration of 
cold spells exerts consistent positive effects, and increasing extreme wet 
days exerts negative effects in all ecosystems. Temperate grasslands and 
croplands negatively respond to most extremes, while positive responses 
are dominant in temperate and boreal forests and deserts. In tundra, 21 
extremes show neutral effects, but 11 extremes show negative effects with 
stronger magnitude than in other ecosystems. Our results reveal distinct, 
biome-specific effects of climate extremes on SOC dynamics, promoting 
more reliable SOC projection under climate change.

Both mean climate (for example, average warming) and the frequency 
and intensity of climate extremes (for example, more heatwaves and 
droughts) are shifting across the globe1. This shift would substantially 
impact terrestrial carbon balance due to strong carbon cycle-climate 
feedbacks2,3. Satellite-based observations and global observation net-
works (for example, FLUXNET) have shown evidence that even a single 
climate extreme event can cause large reduction in regional ecosystem 
production and its effects are usually time lagged or last for years up to 
decades4–6. However, the relatively short-term nature of satellite-based 
and site-level records (for example, satellite observation was only avail-
able from the 1980s) is incapable of predicting the long-term conse-
quences of climate extreme shifts on the global carbon cycle2,7.

Among terrestrial carbon pools of the global carbon cycle, 
soil organic carbon (SOC) is the largest pool and contains more 

than twice the carbon stored in vegetation biomass and the atmos-
phere8. Although the response of SOC to mean climate changes 
such as warming has been extensively studied using modelling 
and experimental approaches9, the role of accompanied shifts of 
climate extremes in regulating such a response has rarely been 
quantified based on observational data, particularly across large 
spatio-temporal extents2. A major challenge is that SOC changes 
would only be detectable or fully manifested at the timescale of SOC 
turnover, which is usually decadal or even centurial in most soils10. For 
this reason, observations after one or several extreme events occur-
ring in a typical year or short period cannot fully capture long-term 
impacts of more extreme climate on SOC dynamics. Furthermore, 
replicating climate extremes in experiments is challenging, and 
different extremes (for example, droughts and heatwaves) may 
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coldest daily minimum temperature), offsetting the negative effect of 
warming on SOC under more extreme conditions (Fig. 2 and Extended  
Data Fig. 1).

Several CEIs exhibit a threshold or turning point regarding the rate 
or direction of warming-induced SOC changes (Fig. 2 and Extended 
Data Fig. 1). Specifically, a decrease in cold wave frequency (CWF) 
initially leads to less SOC reduction until reaching a turning point of 
a 4-day decrease after which further decrease in CWF results in more 
SOC reduction (Fig. 2). A similar pattern is also detected for the length 
of summer days, the number of cool days and nights and the number 
of hot (tropical) nights (Extended Data Fig. 1). For some other CEIs 
(that is, extreme dry frequency, min daily maximum temperature, 
max daily minimum temperature, growing season length, number of 
icing days, heavy precipitation, consecutive wet days), SOC changes 
have an apparent peak at certain CEI changes (Fig. 2 and Extended Data 
Fig. 1). These varied SOC responses may stem from trade-offs between 
changes in carbon inputs to soil and decomposition of SOC under 
more extreme climate27–29 or distinct effects of climate extreme shifts 
on different ecosystem processes (for example, microbial carbon use 
efficiency30) related to SOC dynamics. For instance, the decrease of cold 
wave frequency may not only benefit plant growth thereby enhancing 
carbon inputs to soil but also stimulate microbial decomposition. The 
net effects on SOC balance depend on the proportionate changes in 
carbon inputs and outputs.

The responses of SOC to single extremes such as heatwave, 
extreme dry and extreme wet are not significantly different from the 
responses to their compound events at their low-level changes (that is, 
20% increase in their frequency; Fig. 2b). However, at high-level changes 
(that is, 40% increase in frequency) of both individual events, com-
pound heatwave and extreme dry (HWF + EDF) leads to an additional 

elicit distinct responses in soil carbon fluxes, potentially altering  
SOC balance11,12.

Climate extremes exert influence on SOC dynamics at various 
temporal scales. In the short term, events such as heavy precipitation 
can lead to soil waterlogging, inhibiting microbial decomposition and/
or causing spatial redistribution of SOC through erosion13,14. Drought 
alters carbon inputs to the soil in terms of their amount, quality and tim-
ing through its effect on plant growth and soil hydrothermal regimes7,15. 
Heatwaves can accelerate SOC decomposition16, but are often accom-
panied by drought, resulting in a complex effect on SOC. Over the long 
term, different climate extremes can bring about a series of ecological 
and environmental shifts2 such as: (1) changes in soil physiochemical 
environment (for example, soil aggregate transformation and stabiliza-
tion, hydrophobicity), (2) alterations in plant, soil microbial and animal 
community composition and functionality2,17 and (3) impacts on soil 
hydrology and nutrient cycling18. Overall, shifts in climate extremes 
may directly or indirectly influence long-term SOC dynamics depend-
ing on local environmental conditions and the specific type of climate 
extreme12.

Here we quantify the response of SOC to shifts of various climate 
extremes that are projected under future climate19,20. This quantifica-
tion builds upon SOC stock (kg m−2) measurements in 0–30 cm of 
topsoil at 113,013 sites across the globe (ref. 21; Supplementary Fig. 1), 
along with eight indices representing the magnitude and frequency of 
different extreme events (Supplementary Fig. 2 and Supplementary 
Table 1). These events include heatwaves, cold waves, extreme dry 
and wet days from a global map product derived by the Expert Team 
on Climate Change Detection and Indices22,23. Another 25 indices were 
also obtained from the same map product, reflecting the threshold 
and probability of temperature- and precipitation-related extremes 
based on long-term climate records24 (Supplementary Table 1). Using 
the data, a hybrid approach combining space-for-time substitution and 
meta-analysis techniques21 (Fig. 1) was used to estimate the responses 
of SOC to two general climate change scenarios: a warmer climate 
without extreme shifts (W, that is, only mean annual temperature 
is increased, which is assigned to 1.5 °C in this study) and a warmer 
and more extreme climate (W + E, 1.5 °C warming plus more extreme 
climate; Fig. 1). Uncertainties in future climate extremes25 were con-
sidered by using a five-level change gradient for each of the 33 climate 
extreme indices (CEIs) (Supplementary Table 1). Compound extreme 
events (that is, concurrent occurrence of multiple climate extremes) 
may also be more common in the future26 but are more difficult to pre-
dict. To demonstrate their importance, here we illustrate the influence 
of shifts in two compound extremes involving two widely recognized 
individual extremes: heatwave + extreme dry and heatwave + extreme 
wet (Methods).

Climate extremes diversify the response of SOC to 
warming
Averaging across the globe, SOC is reduced by 10.5% (8.1–12.3%, 
95% confidence interval) under 1.5 °C warming (that is, W, Fig. 2 
and Extended Data Fig. 1), consistent with our previous estimate 
at a similar warming level21. However, this SOC reduction is signifi-
cantly altered by shifts in climate extremes (Fig. 2 and Extended Data  
Fig. 1). For 8 out of 33 CEIs (heatwave frequency, extreme wet mag-
nitude, extreme wet frequency, extreme dry magnitude, max daily 
minimum temperature, maximum daily precipitation, maximum 
precipitation of 5 consecutive days, precipitation intensity), more 
extreme conditions consistently exacerbate SOC reduction (that is, 
additional SOC reduction; Fig. 2 and Extended Data Fig. 1), with the 
additional reduction increasing with higher extreme levels (Fig. 2 and 
Extended Data Fig. 1). For example, SOC reduction increases from 
2% with a 2-day increase in heatwave frequency to 21% with a 10-day 
increase (Fig. 2). On the contrary, SOC reduction is consistently attenu-
ated or even reversed for two extremes (cold wave magnitude and 
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Fig. 1 | Schematic representation of the approach used to quantify the 
response of SOC to climate extreme and warming scenarios. Each dot 
represents one SOC observation. Dots in the ith plate share the same mean 
annual temperature (MATA,i) and the frequency or intensity of the mth climate 
extreme (CEIA,m,i), while dots in the same colour plates indicate a triple sharing the 
same mean annual precipitation (MAP), precipitation seasonality, landform and 
soil type. ΔCEIm (shown in Supplementary Table 1) and ΔT (1.5 °C in this study) are 
changes in CEIA,m and MATA of interest, respectively. SOC values in the warming 
(W) and warming plus more extreme (W + E) plates are compared with the values 
in the ambient (A) plates in the same triple to calculate a weighted average effect 
size (that is, the response of SOC to ΔT and ΔT + ΔCEIm) by the inverse of the sum 
of within- and between-group variances, using meta-analytic techniques. The 
response of SOC to W + E attributed to climate extremes is calculated by the 
comparison between W and W + E plates with meta-analysis (Methods). Figure 
adapted with permission from ref. 21, Springer Nature Limited.
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13% SOC reduction, whereas heatwave and extreme dry events indi-
vidually only lead to additional 2% and 5% SOC reduction, respectively 
(Fig. 2b). Similarly, additional SOC reduction induced by compound 
heatwave and extreme wet events is nearly double compared with that 
induced by single shifts of heatwave or extreme wet under high-level 

changes (Fig. 2b). These results demonstrate that compound climate 
extremes may cause more SOC reduction under warming (especially 
at high-level changes) and have a more profound and complex impacts 
compared to single extremes.

Global average SOC changes induced by climate 
extremes
We estimated percentage SOC changes attributed to climate extremes 
(ΔSOCE) under the W + E scenario by calculating the difference between 
the percentage responses to W + E and to W. Then, a linear mixed-effects 
model with biome-dependent slopes but without intercept (that is, 
additional change should be zero under zero climate extreme changes) 
was fitted to infer the relationship of ΔSOCE with climate extreme 
change levels. The regression slopes can be also explained as the per-
centage of additional SOC changes induced by unit changes in climate 
extremes.

On average, ΔSOCE shows distinct relationships with the 33 CEIs in 
terms of both magnitude and direction (that is, the regression slopes 
for the fixed effect of climate extremes; Fig. 3a). Negative relationships 
are dominant (22 out of 33). However, only the length of hot (tropical) 
nights (TR), cold-spell duration index, extreme dry magnitude (EDM) 
and extreme wet magnitude (EWM) exert significant linear effects (that 
is, the regression slope is significantly different from zero) on ΔSOCE 
(Fig. 3a). Specifically, the slope for TR is −8%, that is, additional percent-
age of SOC reduction is 8% for every 5-day increase of TR. SOC increases 
by 22% per 5-day decrease of cold-spell duration index. For EWM, SOC 
decreases by 7% per 0.1 unit increase of EWM and some other CEIs 
related to extreme precipitation magnitude also show negative effects 
on SOC. Positive relationships between SOC and climate extremes 
mainly occur for extremes related to shortening of low temperature 
days such as frost days and cold spells (Fig. 3a). In addition, the increase 
of low temperature-related extremes represented by daytime and 
nighttime minimum temperature has positive effects, whereas CEIs 
related to high temperature extremes show negative effects, especially 
the maximum and range of daily temperature. For EDM, every 0.1 unit 
increase leads to additional 16% SOC reduction, and the extreme dry 
frequency also shows a negative effect (Fig. 3a).

Biome-specific SOC changes induced by climate 
extremes
SOC in different ecosystems show distinct responses to climate extremes 
(Fig. 3b and Extended Data Fig. 2). In temperate grasslands and crop-
lands, SOC is negatively influenced by most climate extremes assessed 
(23 and 20 out of 33, respectively), followed by tropical/subtropical 
forests (16 out of 33; Fig. 3b). The impacts of climate extremes on SOC in 
croplands may be modulated by management intervention. Irrigation, 
for example, may stimulate SOC decomposition via its positive effects on 
soil moisture. Besides, many crop varieties are genetically selected for 
high production in optimal conditions, so they would be more sensitive 
to extreme events31. In other ecosystems except tundra, positive effects 
are more common (Fig. 3b). Especially, only four CEIs show significant 
negative effects in boreal forests. In tundra, 21 CEIs exert neutral (that 
is, insignificant) effects, while only decreasing cold wave magnitude 
shows positive influence. The remaining 11 extremes show negative 
effects, and, more importantly, the magnitude of most effects is much 
stronger in tundra than their corresponding effects in other ecosystems 
(Fig. 3b and Extended Data Fig. 2). Tundra has been suggested to be the 
most vulnerable ecosystem to climate change32,33. More extreme climate 
may worsen the vulnerability of SOC stocks in tundra.

The same climate extreme exerts distinct effects on SOC across 
ecosystems (Fig. 3b and Extended Data Fig. 2). For example, increase of 
heatwave magnitude has significant negative effect on ΔSOCE in tropi-
cal/subtropical ecosystems (forests and grasslands/savannahs) but 
positive in temperate forest, Mediterranean/montane shrublands and 
croplands (Extended Data Fig. 2). Increase of extreme dry frequency 
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Fig. 2 | Global responses of SOC to climate change scenarios. a, Responses to 
eight integrated climate extremes. HWM and HWF, the magnitude and frequency 
of heatwaves, respectively; CWM and CWF, the magnitude and frequency of cold 
waves, respectively; EWM and EWF, the magnitude and frequency of extreme 
wet, respectively; EDM and EDF, the magnitude and frequency of extreme 
dry, respectively. Numbers in the parentheses show the five change levels. 
b, Responses to compound climate extremes. Two levels of climate extreme 
changes with their selected combinations (due to data limitation) are assessed. 
Different letters in the same group of comparisons indicate significant difference 
between climate change scenarios. A symbol of ‘+’ indicates concurrent 
occurrence of the relevant changes. Error bars show 95% confidence interval, 
centred on the mean. Supplementary Table 1 provides the detailed definition of 
climate extremes, and Supplementary Tables 4 and 5 provide sample size and 
other statistics of a and b, respectively.
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negatively influences ΔSOCE in five ecosystems but positively in tem-
perate forest and deserts. In addition, for the same type of extreme, 
the changes of its frequency and magnitude (that is, the intensity or 
severity of one event) have different consequences on ΔSOCE (Extended 
Data Fig. 2). For example, unlike the positive effects of extreme dry fre-
quency in temperate forests and deserts, the positive effect of extreme 
dry magnitude occurs in boreal forests and tropical/subtropical grass-
lands/savannahs. It is noteworthy that cold-spell duration and extreme 
wet magnitude are the only two CEIs showing consistent positive and 
negative effects (if the effect is significant) on SOC in all ecosystems, 
respectively (Extended Data Fig. 2).

Comparison with field experiments
Drought is the most experimentally explored climate extreme in 
terms of its effect on ecosystem carbon balance, albeit experimental 

duration is relatively short18. We compared our estimates to a recent 
meta-analysis synthesizing global drought experiments18 (Extended 
Data Fig. 3). We integrated ΔSOCE induced by EDM into relevant three 
general ecosystems to conduct a comparison with field drought 
experiments (limited observational data do not allow us to do a 
biome-to-biome comparison; Extended Data Fig. 3). In grasslands, our 
estimation of significant negative ΔSOCE is comparable to the estima-
tion of field experiments. Forest ecosystems on average are less vulner-
able to EDM than grasslands, and our estimation is not significantly 
different from experimental estimations, which, however, show much 
larger uncertainties (Extended Data Fig. 3). In shrublands, we estimate 
comparable negative ΔSOCE between grasslands and shrublands, but 
field observations are generally positive albeit insignificant. Averaging 
across the globe, field manipulative experiments observed smaller 
response of SOC to the same level of EDM changes (Extended Data  
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Fig. 3). In the short time (for example, the duration of field experiments 
ranges from 1 to 13 years; ref. 18), drought usually induces immediate 
reduction of soil respiration, yet carbon inputs do not change much and 
thereby exerting limited effect on net SOC balance. In the long term, 
however, EDM increase may substantially decrease carbon inputs to soil 
through increased plant mortality and decreased vegetation produc-
tivity34, which cannot be fully captured by relative short manipulative 
experiments.

Drivers of the responses of SOC to climate 
extremes
We trained a machine learning model—random forest (RF)—to explore 
controls over the variance of ΔSOCE for the eight CEIs indicating the 
magnitude and frequency of heatwave, cold waves, extreme dry and 
wet events (Methods). For all eight CEIs, the RF model driven by cli-
matic attributes related to mean and extreme climate conditions, soil 
properties, vegetation characteristics and topographic attributes 
explains >70% of the variance of ΔSOCE (Fig. 4a and Extended Data 
Fig. 4). Baseline SOC level is the most important individual predictor 
and alone explains 15–18% of the variance of ΔSOCE. For all eight CEIs, 
ΔSOCE is negatively associated with baseline SOC levels and remains 
constant until SOC reaches a threshold of ~300 Mg C ha−1 (Fig. 4b). 
However, it should be acknowledged that baseline SOC itself should 
not be explained as the driving force of SOC dynamics35. We find that 
those carbon-rich soils mainly distribute nearby or in wetlands includ-
ing peatland and coastal areas and another small fraction in tundra, 
which has relatively low temperature (Extended Data Fig. 5). In these 
systems, particulate organic carbon (POC) usually dominates SOC36 and 

is more sensitive to climate change than other SOC components such as 
mineral-associated organic carbon37, which may result in general strong 
response of SOC to climate change. However, POC has much higher 
C:N ratio than mineral-associated organic carbon36; its decomposi-
tion is strongly dependent of nutrient availability, which would limit 
its response to climate change when POC is quite high38. In addition, 
under climate change, particularly warming and drought-relevant 
events, wetland soils may become less anaerobic and suffer from sub-
sidence39, thereby altering SOC density and the estimation of SOC 
changes based on soil depth. Overall, wetlands involve complex inter-
active responses of aboveground (for example, vegetation shift) and 
belowground process (for example, oxidation, subsidence, shift of 
anaerobic and aerobic conditions) to climate change, which may play 
a vital role in determining wetland SOC balance40.

Baseline climatic attributes together contribute the largest frac-
tion (42–51%) to the explained variance of ΔSOCE for all CEIs (Fig. 4a),  
and their influence is obviously nonlinear (Fig. 4 and Extended 
Data Fig. 6). Mean annual temperature negatively influences ΔSOCE  
(Fig. 4c), whereas the influence of mean annual precipitation is mar-
ginal and much weaker except for extreme dry magnitude (Fig. 4d vs 
4a), demonstrating that SOC is generally more vulnerable to extreme 
dry events in warmer and wetter regions. However, extreme climate 
conditions together are more important than mean climate, suggesting 
that baseline climate extreme conditions play a vital role in determin-
ing the effect of future climate extreme shifts on SOC. Especially, we 
found strong dependency of ΔSOCE induced by a typical CEI on the 
corresponding baseline CEI (Extended Data Fig. 6). For example, if the 
baseline magnitude of EDM is already high, more extreme conditions 
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have a smaller effect on ΔSOCE. The positive effect of decreasing cold 
wave magnitude (CWM) is much stronger in regions with higher base-
line CWM.

Although our study does not explicitly assess the underlying 
mechanisms, biome-specific responses to climate extremes are prob-
ably associated with interactive effects of water and energy on both 
carbon inputs and outputs over space and time. Energy-limited systems 
(for example, boreal forests and tundra) would be more sensitive to 
temperature-related extremes. In boreal forests, for example, the 
reduction of extreme cold events substantially stimulates plant growth 
superseding enhanced SOC decomposition41,42, resulting in net SOC 
gains43,44. This is corroborated with the positive effects of shortening of 
cold spells, lengthening of warm spells and other temperature-related 
extremes (Fig. 3 and Extended Data Fig. 2). In tundra, reduction of 
energy limitation may accelerate permafrost thaw and thereby stimu-
late microbial growth and SOC decomposition32,33. Water-limited sys-
tems (for example, grasslands and savannahs) would be more sensitive 
to extremes that alter seasonal precipitation patterns or worsen/loosen 
water limitation. Additionally, the characteristics of vegetations (for 
example, canopy height, litter layer, rooting depth) would also medi-
ate how ecosystems respond to climate extremes. Woody systems (for 
example, forests and shrublands) may be more tolerant to extreme 

wet conditions than herbaceous systems (for example, grasslands and 
croplands)45 and the existence of an organic layer would increase soil 
water holding capacity and prevent or weaken the loss of particulate 
and dissolved organic carbon via erosion or runoff46. Indeed, our results 
show that extreme wet frequency shows positive effects in forests and 
shrubland ecosystems but negative effects in grasslands and crop-
lands (Extended Data Fig. 2). Overall, climate extreme shifts may alter 
water–energy interactions depending on local climatic conditions, 
which then change plant performance and SOC decomposition and 
stabilization processes such as shifts in microbial community function-
ing and substrate utilization strategies17,47 and thereby induce diverse 
effects of climate extremes across ecosystems.

Global pattern of SOC responses to climate 
extremes
We apply the cross-validated RF models (Extended Data Fig. 4) to map 
ΔSOCE induced by changes in the eight CEIs (that is, the magnitude and 
frequency of heatwave, cold wave, extreme dry and extreme wet) across 
the globe (Fig. 5 and Extended Data Fig. 7) and its uncertainty (Extended 
Data Figs. 8 and 9). Global average additional ΔSOCE is estimated to be 
−139 ± 7.1, −98 ± 4.5, −27 ± 6.1, −4.5 ± 6.3, −125 ± 5.8, −106 ± 5.2, −130 ± 5.8, 
−160 ± 5.8 Pg (mean ± standard error) for the eight CEIs, respectively 
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http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 14 | January 2024 | 98–105 104

Article https://doi.org/10.1038/s41558-023-01874-3

(Supplementary Table 3). There are hotspots of SOC response, albeit 
the global average SOC change is small under some extremes (Fig. 5 
and Extended Data Fig. 10). For example, a 0.15 unit increase in drought 
magnitude (which is equivalent to a 40% increase of its global average) 
only leads to additional <1% reduction of global SOC (Extended Data 
Fig. 10e) but induces 50 Pg SOC reduction in tropical and subtropi-
cal regions, North America and Europe (Supplementary Table 3) and 
increases SOC in many high latitudinal regions, especially in Siberia 
(Fig. 5e and Extended Data Fig. 7e). Six-day increase of annual heatwave 
frequency results in 6% additional SOC reduction averaging across the 
globe (Extended Data Fig. 10b). This reduction is mainly in tropical 
and subtropical regions, North America and northern Europe (Fig. 5b 
and Extended Data Fig. 7b). A 6% increase of drought frequency does 
not significantly alter global SOC (Extended Data Fig. 10f) but leads 
to substantial additional reduction in northern European and North 
American wetlands (Fig. 5f).

More intense (0.15 unit increase in magnitude) and frequent  
(6% increase in frequency) precipitation extremes result in SOC reduc-
tion by 7% and 2%, respectively, across the globe (Extended Data  
Fig. 10g,h). The most vulnerable regions to extreme precipitation are 
Europe, North America and some tropical and subtropical regions 
(Fig. 5g,h). However, more frequent heavy precipitation can offset 
warming-induced SOC reduction in dry and semi-arid regions, such 
as central Asia, Australia, South Africa and the Sahel region (Fig. 5h). 
Fewer cold waves significantly decrease SOC reduction (that is, posi-
tive ΔSOCE) in most regions of the globe (Fig. 5c,d and Extended Data  
Fig. 7c,d). Our results indicate that there are distinct hotspots in ΔSOCE 
depending on the type of climate extreme. However, there are regions 
where SOC is vulnerable to all climate extremes. These regions mainly 
locate in Europe, southeast Asia, North America and the Amazon. 
Unfortunately, these regions are also hotspots experiencing more 
frequent and intense climate extremes48,49.

Limitations and uncertainties
The space-for-time substitution approach has some limitations and 
uncertainties, for example, without considering other global change 
factors (for example, nitrogen deposition and wildfire) and the steady 
state assumption21. However, the impacts of these factors are more dif-
ficult to quantify as they usually exert much larger spatial variability 
(for example, wildfire), and the relevant data are also relatively limited. 
Croplands are the land-use type greatly affected by human activities 
in terms of both cultivation length (from years to millennia) and land 
management. Thus, SOC stocks are unlikely to be under steady state 
in croplands. However, excluding soil profiles from croplands, the 
estimated response of SOC to climate extremes did not apparently 
change (Supplementary Fig. 3), suggesting that steady state assump-
tion would have little effect on our SOC change projection under 
projected climate extremes. A number of other sensitivity analyses 
have also demonstrated the robustness of the approach (Methods and 
Supplementary Figs. 4–6). Another limitation is that only two com-
pound events involving two types of climate extreme were assessed. 
The natural environment may experience multiple compound events 
over different timescales. We acknowledge that more analyses focus-
ing on compound events and their influence are needed50. However, 
potential interconnections among different types of climate extreme 
involved in compound events need to be clearly defined and quantified, 
which itself remains a challenge26.

Conclusions
We used a novel approach to infer SOC changes induced by a warmer 
climate with more climate extremes. Our approach implicitly takes 
long-term transition of ecosystems into account and quantifies the 
SOC difference between steady states under contrasting climate con-
ditions, which is otherwise impossible by conducting field experi-
ments or modelling without explicit understanding of the underlying 

mechanisms. The results reveal distinct (positive, neutral or negative) 
responses of SOC to the shifts of different types of climate extreme. 
On a global scale, on average, most climate extremes may exacerbate 
SOC loss under future climate. Among ecosystems, however, the 
magnitude and direction of the effects are ecosystem dependent. 
Temperate grasslands, croplands and tropical/subtropical forests are 
sensitive to most climate extremes under warming. Tundra showed 
the strongest response to a series of climate extremes compared 
with other ecosystems. Studies focusing on the impacts of climate 
extremes on tundra SOC and carbon-rich soils (for example, wet-
land soil) are urgently needed. Our results and mapping provide a 
benchmark for identifying biome-specific critical climate extremes 
and sensitive areas of SOC changes as a result of climate extremes. 
These results demonstrate that climate extremes play a key role in 
determining SOC balance under climate change probably via modu-
lating local water–energy interactions, thereby carbon inputs and 
SOC decomposition and stabilization processes, which must be 
considered in Earth system models and related climate policies, 
to gain a more reliable prediction for SOC dynamics in response to  
climate change.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods
Data sources
We used the same global dataset of SOC stock (Mg C ha−1) as ref. 23. 
The dataset includes 110,695 SOC measurements in the 0–30 cm soil 
layer depth compiled into the World Soil Information Service (WoSIS) 
snapshot of 2019, which was collated and managed by the WoSIS51. The 
dataset includes the snapshot of 2019. Another 2,778 measurements 
for the 0–30 cm soil layer from permafrost-affected regions52 were 
also included in the dataset. In brief, the data were quality-assessed 
and standardized using consistent procedures. The dataset covers 
nine major biome groups (Supplementary Fig. 1) under various climate 
conditions across the globe. At the locations of SOC measurements, 
mean annual temperature (MAT) ranges from −20.0 to 30.7 °C and 
mean annual precipitation (MAP) from 0 to 6,674 mm.

MAT and MAP at each soil location were extracted from WorldClim 
version 2 (ref. 53), which is a global mapping product at the resolution 
of 0.0083° × 0.0083° using monthly temperature and precipitation 
recorded for the period 1970–2000. Soil profiles in the same 0.0083° 
grid (that is, ~1 km2) share the same MAT and MAP. The WWF map of 
terrestrial ecoregions of the world54 was used to extract the biome 
type at each soil profile. The MODIS land-cover map55 at the same 
resolution of WorldClim was used to identify that if the soil profile 
is located in a cultivated land (that is, cropland or cropland/natural 
vegetation mosaic). A global landform spatial layer was obtained from 
Global Landform Classification56 (https://esdac.jrc.ec.europa.eu/con-
tent/global-landform-classification) to identify the landform at each 
soil location. Global terrestrial lands were divided into three general 
landform types: plains including lowlands, plateaus and mountains 
including hills. A global spatial layer of the 12 soil orders defined by the 
U.S. Department of Agriculture (https://www.nrcs.usda.gov/resources/
guides-and-instructions/soil-taxonomy) were used to distinguish the 
soil type for each soil profile.

Climate extremes
At the location of each soil profile, 25 climate extreme indices (CEIs) 
defined by the expert team on Climate Change Detection and Indices57 
were extracted from a high-resolution historical dataset of climate 
extreme indices23 (that is, a gridded mapping product at the resolution 
of 0.25° × 0.25°, which is equivalent to ~25 km at the equator). In brief, 
the average CEIs were calculated based on sub-daily temperature and 
precipitation observations during the period 1970–2016 using the 
climate data managed by the Global Land Data Assimilation System58, 
representing baseline climate extreme conditions such as the intensity 
and frequency of heatwaves, drought and heavy precipitation. Soil 
profiles located in the same 0.25° × 0.25° grid (that is, ~25 km × ~25 km) 
share the same CEIs. A detailed description of CEIs is listed in Supple-
mentary Table 1.

In addition, another eight indices indicating the magnitude and 
frequency of heatwave, cold waves, extreme dry and wet events (Sup-
plementary Table 1) were also obtained from this global mapping 
product of CEIs (Supplementary Fig. 2)23. A heatwave event is defined 
as consecutive 3 or more days with a positive value of the excess heat 
factor59. The magnitude and frequency of heatwaves (HWM and HWF) 
are the average temperature across all individual heatwave events and 
the total number of days that contribute to all heatwave events every 
year, respectively. The cold wave event is identified by the excess cold 
factor60 with a negative value for consecutive 3 or more days. The mean 
magnitude and frequency of cold wave (CWM and CWF) are the mean 
temperature and number of days of all cold wave events, respectively. 
The standardized precipitation index (SPI) at the temporal resolution 
of 3 months (ref. 61) in this global historical dataset of CEIs23 was used 
to identify extreme dry and wet events. An extreme dry event (that is, 
drought) was identified if SPI ≤ −1, and an extreme wet event was identi-
fied if SPI > 1 (refs. 62,63). Then, the intensities of every extreme dry and 
wet events were calculated as the average of the difference between 

SPI in event duration and event thresholds. The average magnitude 
of extreme dry and wet event (EDM and EWM) is the average value 
of intensity of individual events during the period 1970–2016. Their 
average frequency was calculated as the percentage of total extreme 
dry and wet (EDF and EWF) months in total months during the period 
1970–2016.

Space-for-time substitution-based grouping
Taking advantage of the big dataset of more than 100,000 soil profiles, 
we adopted an approach combining space-for-time substitution with 
meta-analysis techniques21 to estimate the role of climate extremes in 
regulating the response of SOC to warming. This approach controls 
the effects of other confounding variables that play an important role 
in regulating SOC stocks and their spatial distribution such as soil 
type and landform and precipitation and its seasonality and conducts 
assessment based on grouped data distinguished by the intensity and/
or frequency of climate extremes of interest.

The approach has been explicitly described in ref. 21 and applied 
to estimate the response of whole-soil profile SOC dynamics to warm-
ing without considering climate extremes21. In this study, we quantify 
the influences of climate extremes on SOC dynamics under climate 
warming by comparing SOC changes under two general climate sce-
narios (Fig. 1): warming alone (W) and warming with changes in cli-
mate extremes represented by the 33 CEIs (W + E). For each CEI, the 
estimated response under W + E was compared to that under W. In 
addition, because there are no consistent estimations on the magnitude 
of the changes of climate extremes1, a potential change gradient with 
five levels is assigned to each CEI (ΔCEI; Supplementary Table 1). For 
this reason, there are a total of 165 comparisons (that is, 33 CEIs × five 
change levels). For each CEI, in detail, the estimation starts from a soil 
profile randomly selected from the 113,013 soil profiles. This soil profile 
is used as a criterion to select a group of soils sharing the same MAT, 
CEI, MAP, precipitation seasonality, landform and soil type. This group 
is called ambient group (A group).

Then, another two groups (that is, W and W + E groups) are selected 
according to the same selection criterion as the A group, except that 
MAT in both W and W + E groups must be certain degrees higher (1.5 °C 
in this study, which is the global climate target64) than that in the A 
group to reflect warming, and CEI in the W + E group must be certain 
magnitude higher or lower (that is, the five change levels of CEI; Sup-
plementary Table 1) than CEI in the A group to reflect shift of extreme 
climate. During the selection process, MAT, CEI and MAP of soil profiles 
(due to they are continuous variables) in the same group cannot be 
exactly the same, and tolerance values (τ, which defines the allowed 
maximum deviation of the variable of interest in the same group) of 
0.5 °C and 25 mm were assigned for MAT and MAP, respectively. To 
make the estimation more robust, these groups with less than five soil 
profiles are rejected. For each CEI, an empirical tolerance value has 
also been assigned by considering its distribution across the globe 
(Supplementary Table 1). These tolerance values are different among 
the CEIs. By conducting this selection and grouping, we obtained 
triples including A, W and W + E groups. With the replacement of the 
selected profile within the triple, the same random sampling, selec-
tion and grouping procedure have been applied until the number of 
triples is large enough to obtain robust estimation of response ratio 
(Supplementary Fig. 3). At last, we obtain a set of triples with the same 
warming and climate extreme change levels under different environ-
mental conditions (that is, ambient MAT and CEI, MAP, precipitation 
seasonality, soil type and landform).

Compound extreme events (that is, concurrent occurrence of mul-
tiple climate extremes) may be also more common in the future26,65. To 
estimate the response of SOC to compound climate extremes, several 
CEIs were simultaneously used to conduct the selection and grouping 
procedure to represent the occurrence of multiple events. Unfortu-
nately, the data do not allow us to quantify the effects of all possible 
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compound events as more criteria have to be applied to the selection 
of triples for comparison, which will substantially shrink the number 
of triples, resulting in unreliable estimation. Here we quantified only 
the influence of shifts in two common compound events involving two 
individual events: heatwave + extreme dry and heatwave + extreme wet. 
The data allowed us to obtain only enough triples for the first two levels 
of changes of the two events. For this assessment, the similar sampling 
and selection processes for single events have been applied except that 
both CEIs were considered.

Estimation of the response of SOC to warming and climate 
extreme changes
Meta-analysis techniques were used to estimate the response of SOC 
to W and W + E by comparing SOC stock in the A group to that in the W 
and W + E groups, respectively. For ith selected triple (A, W and W + E), 
the logarithmic response ratios of SOC (lnRi) to W and W + E were cal-
culated, respectively, as:

lnRW,i = ln(
SOCW,i

SOCA,i
) , (1)

lnRW+E,i = ln(
SOCW+E,i

SOCA,i
) , (2)

where SOCA,i , SOCW,i  and SOCW+E,i  are the mean SOC stock in the ith A, 
W and W + E triples, respectively. The two response ratios enable us to 
estimate the response attributed to climate extreme changes (lnRE,i) 
as:

lnRE,i = lnRW+E,i − lnRW,i = ln(
SOCW+E,i

SOCW,i
) . (3)

Then, the individual lnRE,i values calculated for each triple  
were used to estimate a global mean response ratio (lnRE ) by a  
weighted mixed-effects model using the rma.av function in package 
metafor in R 4.1.1. The weight (w) was calculated as the inverse of the 
sum of within- (v) and between-group (τ2) variances in the same  
set of triples:

lnRE =
∑(lnRE,i ×wi)

∑wi
, (4)

where wi =
1

vi+τ2
 is the weight for the lnRE,i in the ith triple. The 

within-group variance (v) was calculated as:

vi =
Se2

NeXe2
+ Sc2

NcXc2
, (5)

where Se and Sc are the standard deviation of SOC in the A and W (or 
W + E) groups, respectively; Xe and Xc are the mean of SOC in the A and 
W (or W + E) groups, respectively; and Ne and Nc are the number of 
samples in the A and W (or W + E) groups, respectively. The 
between-group variance (τ2) was estimated by restricted maximum 
likelihood. To assist interpretation, lnRE  was back transformed and 
reported as percentage change, that is, (elnRE − 1) × 100% . The 
back-transformed values were also used for subsequent data 
analyses.

Especially, the percentage change calculated from lnRE  was 
referred as the additional global percentage change induced by climate 
extremes under W + E (ΔSOCE), that is, ΔSOCE = (elnRE − 1) × 100% . A 
linear mixed-effects model treating ecosystem type as a random factor 
was fitted to assess the relationship between ΔSOCE and change levels 
of climate extremes using the lmer function in the lmerTest package in 
R 4.1.1.

Here we note that an implicit assumption underlying the 
space-for-time substitution approach is that critical land-surface 
processes, which substantially change the state or succession direc-
tion of studied triples (for example, volcano disruption-induced new 
soil formation and/or soil cultivation in one group but not in another 
group) are independent of space and time66. That is, soils in any typical 
triple were not and will not be differently influenced by other critical 
processes regulating SOC dynamics. In addition, the approach assumes 
that soils in the three groups of the same triple are at the same average 
succession stage (for example, steady state or similar succession direc-
tion). Croplands are subjected to substantial management interven-
tions (for example, tillage, fertilizer application, irrigation), and these 
management interventions vary widely across space and over time. 
As such, croplands would not meet the assumption of steady state 
or similar succession direction, providing an opportunity to test the 
sensitivity of these assumptions on the results. To do so, we repeated 
all assessment by excluding soil profiles from croplands and compared 
the results with that including cropland soils (Supplementary Fig. 4). 
In addition, soils sampled at different times also may be at different 
stages; we repeated all assessment by excluding data measured before 
1970 (Supplementary Fig. 5). In addition, we conducted a sensitivity test 
using a leave-out-out approach that sequentially removes one triple to 
calculate the grand means using the remaining data. For all CEIs, the 
results show that the grand means are not sensitive to any single triple 
(Supplementary Fig. 6).

Driver analysis and global mapping
Focusing on ΔSOCE, we explained its variance by fitting a machine 
learning-based statistical model—random forest (RF) driven by 67 
potential environmental variables (Supplementary Table 2), includ-
ing mean and extreme climate conditions, soil properties, vegetation 
properties and terrain attributes. The RF model has an advantage of 
taking into account nonlinear and interactive relationships among 
predictors, providing a robust estimation of overall and individual 
importance of the assessed predictors. Before fitting the model, col-
linearity among the predictors is identified by variance inflation factor 
(VIF) using the vif function in the car package in R 4.1.1, and predictors 
with VIF of greater than 10 (28 out of the 67 variables) were removed 
from the model. Model hyperparameters (mtry, randomly selected 
predictors; splitrule, splitting rule; min.node.size, minimal node size) 
were optimized by using a tenfold cross-validated approach using the 
train function in the caret package in R 4.1.1. That is, 80% of data were 
used to train the RF model, and the remaining 20% data were used 
to validate the model (Extended Data Fig. 4). The best RF model was 
selected with the highest coefficient of determination (R2).

The relative importance of each predictor was estimated by per-
mutation variable importance measurements using the varImp func-
tion in package caret. Briefly, on the basis of the times a predictor was 
selected for splitting when growing a tree, the mean square error for 
every given regression tree with out-of-bag estimates is calculated. The 
change of model residuals due to that splitting represents the influence 
of the predictor. To compare the relative importance of individual 
predictors among CEIs, their influences were first normalized with the 
influence of the most important predictor and then multiplied by the 
corresponding model performance (that is, R2). In addition, a partial 
dependence analysis was used to explore the partial dependence of 
ΔSOCE on CEI change gradients using the partial function in package 
pdp in R 4.1.1.

The RF model with the lowest rooted mean square error (RMSE) 
for predicting the effects of climate extremes on ΔSOCE was applied 
to the globe at the resolution of 0.25° × 0.25° using gridded data of 
model predictors (the Harmonized World Soil Database, i.e. the HSWD 
dataset67, was used for baseline SOC level) to map the regulating effect 
of selected climate extreme shifts on SOC responses under 1.5 °C warm-
ing. This mapping was only demonstrated using the eight indices 
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representing the magnitude and frequency of extreme events with their 
median change levels (Supplementary Table 1). That is, the magnitude 
(HWM) and frequency of heatwaves (HWF) are increased by 3 °C and 6 
days, respectively; the magnitude and frequency of both extreme dry 
(EDM) and wet (EWM) are increased 0.15 unit and 6%, respectively; the 
magnitude and frequency of cold wave (CWM and CWF) are decreased 
by 3 °C and 6 days, respectively. The uncertainty of the response was 
estimated as the standard error of individual predictions of 500 trees 
in the RF model (Extended Data Figs. 8 and 9).

Data availability
The 33 climate extreme indices can be accessed at https://doi.
org/10.1594/PANGAEA.898014. Global mapping products gener-
ated in this study are publicly available and deposited to https://doi.
org/10.6084/m9.figshare.22317202. Other data used in this study are 
the same to those used in ref. 21, which are publicly accessible. The 
coastline data in all maps can be gained from https://www.naturalearth-
data.com/downloads/50m-physical-vectors/50m-coastline/.

Code availability
Code (R scripts)68 used to assess the data and generate the results is 
deposited at https://doi.org/10.6084/m9.figshare.22317202.
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Extended Data Fig. 1 | The response of soil organic carbon to climate change scenarios. Error bars show 95% confidence interval, centred on the mean with the 
sample size shows Supplementary Data 1. Detailed descriptions of climate extreme indices (CEIs) and climate scenarios are shown in Supplementary Table 1.
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Extended Data Fig. 2 | The additional changes in soil organic carbon induced 
by climate extremes under a warmer and more extreme climate. The 
dependence of additional changes in soil organic carbon (ΔSOCE) on the change 
levels of climate extremes under a warmer and more extreme climate. Grey grids 

indicate that the estimated dependence is statistically insignificant (P > 0.05). 
TS forests, tropical/subtropical forests; Med/Mon shrublands, Mediterranean/
montane shrublands; TS grasslands/savannas, tropical/subtropical grasslands/
savannas. Detailed descriptions of CEIs are shown in Supplementary Table 1.
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Extended Data Fig. 3 | The comparison of soil organic carbon changes 
induced by changes in extreme dry magnitude using our approach with file 
drought experimental results. Comparison of soil organic carbon changes 
induced by changes in extreme dry magnitude (EDM). Deng et al. (2021) 
synthesized the data from field experiments. Biomes are grouped into tundra, 
shrublands, grasslands, and forests. Dots with bars show the mean effect sizes 

with 95% confidence intervals, and numbers besides them are sample sizes used 
to calculate the mean effect size. The actual drought levels (that is, the reduction 
of precipitation) in field drought experiments were normalized to annual mean 
precipitation. The change level in our estimation which is close most to the 
experimental change level was targeted to conduct the comparison.
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Extended Data Fig. 4 | The performance of random forest model. The performance of random forest model on predicting soil organic carbon responses attributed 
to eight climate extremes under a warmer and more extreme climate. Detailed descriptions of climate extreme indices (CEIs) are shown in Supplementary Table 1.
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Extended Data Fig. 5 | The distribution of global wetlands and the location of soils with organic carbon stock of >300 Mg C ha–1 (0–30 cm) used in this study. 
The wetland map data is obtained from http://www.wwfus.org/science/data.cfm.
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Extended Data Fig. 6 | The partial depended relationship of soil organic 
carbon changes with background climate extreme conditions. The 
relationship of soil organic carbon changes (that is, ΔSOCE) with background 

climate extreme conditions. Partial dependence of ΔSOCE induced by a typical 
CEI on corresponding background CEI. Detailed descriptions of the eight CEIs are 
shown in Supplementary Table 1.
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Extended Data Fig. 7 | The global spatial pattern of absolute changes in soil 
organic carbon stock under a warmer and more extreme climate. Global 
spatial pattern of absolute changes in soil organic carbon stock attributed to 
climate extreme shifts under a warmer and more extreme climate. a-h, eight 

climate extremes including heat wave magnitude (a) and frequency (b), cold 
wave magnitude (c) and frequency (d), extreme dry magnitude (e) and frequency 
(f), extreme wet magnitude (g) and frequency (h).
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Extended Data Fig. 8 | The uncertainty of soil organic carbon relative 
changes under a warmer and more extreme climate. Uncertainty of soil 
organic carbon changes attributed to climate extreme shifts (ΔSOCE) under a 
warmer and more extreme climate. ΔSOCE is defined as the difference between 
percentage responses of SOC to W + E and that to W, which can also be explained 

as the additional changes in SOC induced by climate extremes. a-h, eight climate 
extremes including heat wave magnitude (a) and frequency (b), cold wave 
magnitude (c) and frequecy (d), extreme dry magnitude (e) and frequency (f), 
extreme wet magnitude (g) and frequency (h).

http://www.nature.com/natureclimatechange
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Extended Data Fig. 9 | The uncertainty of soil organic carbon absolute 
changes attributed to climate extreme shifts (ΔSOCE, Mg C ha−1) under a 
warmer and more extreme climate. The standard error was estimated based 
on 500 estimates of the random forest model. a-h, eight climate extremes 

including heat wave magnitude (a) and frequency (b), cold wave magnitude (c) 
and frequecy (d), extreme dry magnitude (e) and frequency (f), extreme wet 
magnitude (g) and frequency (h).
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Extended Data Fig. 10 | The latitudinal pattern of changes in soil organic 
under 1.5 °C warming plus the specified climate change shifts. Latitudinal 
pattern of changes in soil organic carbon attributed to climate extremes (that 
is, ΔSOCE) under 1.5 °C warming plus the specified climate change shifts. ΔSOCE 
is defined as the difference between percentage responses of SOC to W + E and 
that to W, which can also be explained as the additional changes in SOC induced 

by climate extremes. a-h, eight climate extremes including heat wave magnitude 
(a) and frequency (b), cold wave magnitude (c) and frequecy (d), extreme dry 
magnitude (e) and frequency (f), extreme wet magnitude (g) and frequency (h). 
Black and green lines indicate the median and global average. Dashed lines show 
zero change, which is blocked by green lines in e and f.

http://www.nature.com/natureclimatechange

	Responses of soil organic carbon to climate extremes under warming across global biomes

	Climate extremes diversify the response of SOC to warming

	Global average SOC changes induced by climate extremes

	Biome-specific SOC changes induced by climate extremes

	Comparison with field experiments

	Drivers of the responses of SOC to climate extremes

	Global pattern of SOC responses to climate extremes

	Limitations and uncertainties

	Conclusions

	Online content

	Fig. 1 Schematic representation of the approach used to quantify the response of SOC to climate extreme and warming scenarios.
	Fig. 2 Global responses of SOC to climate change scenarios.
	Fig. 3 The dependence of additional ΔSOCE on change levels of climate extremes under warming.
	Fig. 4 Influences of environmental variables on SOC changes attributed to climate extreme shifts under warming.
	Fig. 5 Global spatial pattern of changes in soil organic carbon attributed to climate extreme shifts under a warmer and more extreme climate.
	Extended Data Fig. 1 The response of soil organic carbon to climate change scenarios.
	Extended Data Fig. 2 The additional changes in soil organic carbon induced by climate extremes under a warmer and more extreme climate.
	Extended Data Fig. 3 The comparison of soil organic carbon changes induced by changes in extreme dry magnitude using our approach with file drought experimental results.
	Extended Data Fig. 4 The performance of random forest model.
	Extended Data Fig. 5 The distribution of global wetlands and the location of soils with organic carbon stock of >300 Mg C ha–1 (0–30 cm) used in this study.
	Extended Data Fig. 6 The partial depended relationship of soil organic carbon changes with background climate extreme conditions.
	Extended Data Fig. 7 The global spatial pattern of absolute changes in soil organic carbon stock under a warmer and more extreme climate.
	Extended Data Fig. 8 The uncertainty of soil organic carbon relative changes under a warmer and more extreme climate.
	Extended Data Fig. 9 The uncertainty of soil organic carbon absolute changes attributed to climate extreme shifts (ΔSOCE, Mg C ha−1) under a warmer and more extreme climate.
	Extended Data Fig. 10 The latitudinal pattern of changes in soil organic under 1.




