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Terrestrial photosynthesis inferred from 
plant carbonyl sulfide uptake

Jiameng Lai1, Linda M. J. Kooijmans2, Wu Sun3, Danica Lombardozzi4, J. Elliott Campbell5, 
Lianhong Gu6, Yiqi Luo1, Le Kuai7 & Ying Sun1 ✉

Terrestrial photosynthesis, or gross primary production (GPP), is the largest carbon 
flux in the biosphere, but its global magnitude and spatiotemporal dynamics remain 
uncertain1. The global annual mean GPP is historically thought to be around 120 PgC yr−1 
(refs. 2–6), which is about 30–50 PgC yr−1 lower than GPP inferred from the oxygen-18 
(18O) isotope7 and soil respiration8. This disparity is a source of uncertainty in predicting 
climate–carbon cycle feedbacks9,10. Here we infer GPP from carbonyl sulfide, an 
innovative tracer for CO2 diffusion from ambient air to leaf chloroplasts through 
stomata and mesophyll layers. We demonstrate that explicitly representing mesophyll 
diffusion is important for accurately quantifying the spatiotemporal dynamics of 
carbonyl sulfide uptake by plants. From the estimate of carbonyl sulfide uptake by 
plants, we infer a global contemporary GPP of 157 (±8.5) PgC yr−1, which is consistent 
with estimates from 18O (150–175 PgC yr−1) and soil respiration (149−23

+29 PgC yr−1), but 
with an improved confidence level. Our global GPP is higher than satellite optical 
observation-driven estimates (120–140 PgC yr–1) that are used for Earth system model 
benchmarking. This difference predominantly occurs in the pan-tropical rainforests 
and is corroborated by ground measurements11, suggesting a more productive tropics 
than satellite-based GPP products indicated. As GPP is a primary determinant of 
terrestrial carbon sinks and may shape climate trajectories9,10, our findings lay a 
physiological foundation on which the understanding and prediction of carbon–
climate feedbacks can be advanced.

Terrestrial ecosystems remove carbon dioxide (CO2) from the atmos-
phere through photosynthesis, which is the largest carbon flux on Earth 
and fuels subsequent processes of the terrestrial carbon cycle12. Despite 
decades of effort to quantify photosynthetic CO2 uptake (or GPP), 
substantial uncertainty remains in its global magnitude, spatial pat-
terns, temporal dynamics and environmental responses6,8,13,14. This 
uncertainty cascades into predicting carbon–climate feedbacks1. The 
global GPP has been estimated to be around 120 PgC yr−1 since the early 
1980s2,3, a value that has later been reiterated by remote sensing4,5. 
However, this value is at odds with independent inferences based on 
the 18O signature of atmospheric CO2 (150–175 PgC yr−1)7 and soil res-
piration (149−23

+29 PgC yr−1)8. Such uncertainties present challenges for 
projecting the future trajectories of terrestrial carbon sinks15 and call 
for new constraints on GPP and its spatiotemporal patterns1.

Carbonyl sulfide (OCS or COS) is a trace gas in the atmosphere, whose 
concentration is six orders of magnitude lower than that of CO2 (ref. 16). 
Plants take up OCS through a diffusion pathway shared with CO2 and 
consume it by carbonic anhydrase (CA) within leaves. As the hydrolysis 
of OCS by CA is irreversible, plant OCS uptake, unlike CO2 exchange, is 
not offset by any production process and thereby tracks GPP. Moreover, 
the plant uptake, the dominant sink of atmospheric OCS, is spatially 
separated from its main sources (that is, ocean and industrial sources)17. 

Consequently, the continental-scale uptake of OCS and CO2 (that is, 
GPP) are coupled10,17.

Quantifying GPP from OCS fluxes requires a realistic representation 
of OCS diffusion (from ambient air to leaf chloroplasts) and reaction 
processes (consumption by CA) along the soil–plant–atmosphere 
continuum16, as implemented in terrestrial biosphere models (TBMs). 
The OCS consumption through CA ( gCA

OCS) is generally not considered 
a limiting factor for OCS exchange18. OCS diffusion parallels CO2 dif-
fusion, as they share the pathway from ambient air through the leaf 
boundary layer, stomata, mesophyll layers and to their respective reac-
tive sites16. Along this pathway, the boundary layer conductance gb and 
stomatal conductance gs for CO2 ( gb

CO2 and gs
CO2, respectively) have 

been represented in most TBMs19. Such formulations can be adapted 
to represent the counterparts for OCS (that is, gb

OCS and gs
OCS), after 

accounting for the different molecular diffusivities of OCS and CO2 in 
air16. However, the mesophyll conductance (gmes) has long been 
neglected in TBMs, even though mesophyll layers act as a major barrier 
(with a magnitude comparable to gs) to the movement of both CO2 and 
OCS inside leaves of C3 plants20,21. Here gmes

OCS is assumed to be equal  
to gmes

CO2, as the aqueous diffusivities of CO2 and OCS are similar22,23. 
Unless otherwise specified, we use gmes to denote mesophyll conduct-
ance for both CO2 and OCS.
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An explicit implementation of gmes is therefore essential to mecha-
nistically resolve the internal drawdown of CO2 and OCS along the 
mesophyll diffusion pathway. Although ad hoc compensating strategies 
using parameter tuning were used (or gmes-implicit) and have seemed 
reasonable for estimating the ‘mean’ for contemporary periods over 
limited spatial areas, such strategies may fall short in characterizing 
seasonal, interannual or long-term trends and spatial variability24. 
The impact of gmes on the temporal and spatial dynamics of plant OCS 
uptakes and on OCS-inferred GPP estimates remains unclear.

In this study, we quantify global plant OCS uptake and GPP and map 
their spatiotemporal dynamics using a bottom-up, process-based 
approach. We incorporate mechanistic models of gmes (ref. 24) and 
OCS diffusion16 into National Center for Atmospheric Research Com-
munity Land Model version 5 (CLM5; Methods). We verify estimates 
of both OCS uptake and GPP against independent measurements and 
inferences from the field to the global scale. A key advantage of our 
approach is to resolve the spatiotemporal patterns of GPP, with new 
insights beyond a single global constraint offered by 18O (ref. 7) or soil 
respiration8.

Impact of gmes on OCS flux
Compared with the gmes-implicit treatment, an explicit mechanistic 
representation of gmes improves agreement in ecosystem OCS fluxes 
(FOCS; negative for net uptake) with in situ measurements at both Hyyt-
iälä Forest, Finland (FI-Hyy) and Harvard Forest, USA (US-Ha1), the 
only two sites for which multi-year, continuous ecosystem OCS flux 
measurements are available (Methods, Fig. 1 and Supplementary Fig. 1). 
In particular, the gmes-explicit simulation better captures not only the 
peak-season magnitude but also the seasonal dynamics of FOCS. For 
example, at FI-Hyy, in situ FOCS reveals that OCS uptake may start as early 
as the end of January (for example, in 2017; Supplementary Fig. 1). This 
early start is unlikely to be a consequence of soil OCS uptake because 
the soil temperature was too low to stimulate soil uptake (Supplemen-
tary Fig. 2). The gmes-explicit simulation more realistically captures this 
early start of active FOCS uptake. Moreover, in the spring and autumn at 
both FI-Hyy and US-Ha1, the gmes-explicit simulated FOCS agrees well with 
measurements; by contrast, the gmes-implicit simulation underestimates 
FOCS in both spring and autumn at both sites.

The improved model–observation consistencies in FOCS result from 
an explicit consideration of gmes

OCS. This is confirmed by examining the 
internal conductance of OCS from the leaf substomatal cavity to the 
OCS consumption site ( gi

OCS) and the overall conductance of OCS from 

ambient air to the OCS consumption site ( gt
OCS; Methods). The 

gmes-implicit strategy bundles gmes
OCS and gCA

OCS to form an apparent inter-
nal OCS conductance ( gi

OCS) and ties it empirically to the maximum 
carboxylation rate (Vcmax) through a fixed scaling factor α (Methods)16. 
However, the actual relationship between gi

OCS and Vcmax may vary with 
environmental conditions and phenological stages25 beyond what the 
limited existing observations of gas exchange can constrain16. Taking 
the two sites as an example, the Vcmax-scaled gi

OCS and the resulting 
gt

OCS tend to be smaller than those calculated from gmes
OCS and gCA

OCS 
explicitly considered throughout the year, especially in the dormant 
and shoulder seasons (Supplementary Fig.  3). By contrast, the 
gmes-explicit gt

OCS more closely matches in situ measurements (Sup-
plementary Fig. 3). These results indicate that parameter adjustment 
cannot compensate for a lack of mechanistic representation of gmes

OCS 
(Supplementary Fig. 4). Although the peak FOCS can be matched by 
tuning the scaling factor α (ref. 25), such tuning cannot reproduce the 
seasonal variations of FOCS (Supplementary Fig. 1), particularly in the 
shoulder and dormant seasons because Vcmax decreases faster than 
gi

OCS does (Supplementary Fig. 4). A similar phenomenon occurs at 
night when carboxylation pauses while leaf stomata remain partially 
open, allowing sizeable plant OCS uptake that amounts to 20–30% of 
the total daily uptake26–28. Such night-time plant OCS uptake cannot 
be captured by the gmes-implicit strategy, but can be reproduced by the 
gmes-explicit simulation (Supplementary Fig.  5). Note that both 
gmes-implicit and gmes-explicit simulations assume that OCS is predom-
inantly consumed by CA within leaf chloroplasts29.

Globally, gmes-implicit and gmes-explicit simulations of FOCS show 
remarkable differences in time and space (Fig. 2 and Supplementary 
Fig. 6). Implicit gmes modelling leads to a weaker FOCS for almost all 
plant functional types (PFTs; Fig. 2) but C3 arctic grass. From 2000 to 
2010, the gmes-implicit simulation yields a global average OCS sink of 
752 GgS yr−1, consistent with the SiB4 estimate of 753 GgS yr−1 (ref. 25). 
The gmes-explicit simulation yields a global FOCS of 967 GgS yr−1, which is 
still within the range of 368–1,279 GgS yr−1 (with a mean of 917 GgS yr−1) 
reported previously (Supplementary Fig. 6). Differences between the 
gmes-explicit and gmes-implicit simulations (ΔFOCS), generally around 
30–50%, persist throughout the year for temperate and tropical regions 
but exhibit the largest seasonal variation in boreal forests of the North-
ern Hemisphere. The distinct seasonal variation of ΔFOCS in boreal 
forests indicates a longer active OCS uptake period by gmes-explicit 
than gmes-implicit simulations, consistent with in situ measurements 
at FI-Hyy (Fig. 1 and Supplementary Fig. 1). The most pronounced gmes 
impact on FOCS is concentrated in Northern Hemisphere boreal forests 
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Fig. 1 | Comparison of simulated terrestrial ecosystem OCS fluxes with site 
observations. a,b, Comparison of seasonal cycles of terrestrial ecosystem 
OCS fluxes (FOCS) simulated by implicit and explicit representations of mesophyll 

conductance ( g mes
OCS) with in situ ecosystem-scale measurements at FI-Hyy (a) 
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because of their stronger mesophyll diffusion limitation (that is, smaller 
gmes) than other PFTs24 (Supplementary Fig. 7). For these PFTs, gmes acts 
as a strong barrier to both OCS and CO2 diffusion, decreasing FOCS by 
10% to 50% (Supplementary Fig. 8) and potentially reducing photo-
synthesis by 25% to 75% according to leaf-level studies30. Although the 
arctic C3 grass is the only PFT to show weaker FOCS in the gmes-explicit 
simulation, this pattern cannot yet be validated owing to scarce meas-
urements from this PFT31. Future studies, such as measurements and 
modelling of gmes dependence on leaf traits, temperature and other 
environmental conditions, are required to understand the impact of 
gmes on FOCS for this PFT.

Our results highlight the importance of mesophyll control, which is 
of a similar magnitude to stomatal control, but has not received due 
attention in TBM representation24. The global gmes model used here 
formulates gmes as a function of leaf dry mass per unit area (Ma), and 
considers its vertical variation within canopy depth (driven by light 
gradient) as well as its response to leaf temperature and water stress. 
This formulation characterizes the first-order impacts of leaf structure 
and environmental variations on gmes and demonstrates reasonable 
performance in estimating contemporary GPP and OCS fluxes across 
spatial scales. However, future research to improve the gmes model for-
mulation is still needed, especially with regard to the varying relation-
ship between gmes and Ma across different PFTs32, temperature response 
functions of gmes

33, complex responses of gmes to soil water stress34, and 

acclimation to future environmental changes35. These complexities, 
although challenging to parameterize owing to limited measurements, 
are critical to understanding and predicting the gmes impact on global 
carbon and water fluxes under future changing climate scenarios20 
(see discussion in Supplementary Text 1).

GPP inferred from OCS fluxes
Furthermore, we used leaf relative uptake (LRU; the concentration- 
normalized ratio of OCS and CO2 uptake)14,36 to translate plant OCS 
uptake into GPP. LRU varies with environmental conditions, particu-
larly light intensities, among other factors (for example, water vapour 
pressure deficit (VPD))26,37. The authors of ref. 38 developed a parsimo-
nious empirical equation between LRU and photosynthetically active 
radiation (PAR) based on hourly in situ measurements at FI-Hyy. This 
unique leaf-scale dataset paired LRU and PAR along a full range of PAR 
continuum. Its joint use with concurrent canopy-level OCS flux meas-
urements facilitated scaling from leaf to canopy scales. We applied 
the LRU–PAR equation developed from this dataset (equation (25) 
and Supplementary Fig. 9) to translate the simulated plant OCS fluxes 
(gmes-explicit) into GPP, denoted as GPPOCS_LRU_PAR (Methods).

We found that GPPOCS_LRU_PAR mirrors the in situ GPP partitioned 
from net ecosystem exchange of CO2 (NEE) at both diurnal (Fig. 3) 
and seasonal (Supplementary Fig.  10) scales. Compared to GPP 
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Fig. 2 | Comparison of FOCS (2000–2010 average) between gmes-implicit and 
gmes-explicit simulations across PFTs. Curves show monthly mean FOCS  
(the right ordinate), and bars denote relative difference in percentage (ΔFOCS, 
gmes-explicit minus gmes-implicit, normalized by gmes-explicit FOCS; the left ordinate). 
Maps show the seasonal ΔFOCS across the globe. A positive ΔFOCS indicates larger 

ecosystem OCS uptake (or sink) in gmes-explicit simulations. BDS, broadleaf 
deciduous shrub; BDT, broadleaf deciduous tree; BES, broadleaf evergreen 
shrub; BET, broadleaf evergreen tree; NDT, needleleaf deciduous tree; NET, 
needleleaf evergreen tree. Global PFT distribution is shown in Supplementary 
Fig. 16.
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inferred from plant OCS uptake with a commonly used constant 
LRU value (1.61 for C3 (ref. 39); GPPOCS_LRU_constant, gmes-explicit), GPP 
derived from PAR-dependent LRU (GPPOCS_LRU_PAR) is higher during 
daytime and the growing season, but zero at night-time and lower 
during the non-growing season as expected. GPPOCS_LRU_PAR tracks 
the diurnal and seasonal dynamics of in situ GPP more closely than 
GPPOCS_LRU_constant. In addition, GPPOCS_LRU_PAR outperforms GPP simu-
lated by the default Farquhar, von Caemmerer and Berry (FvCB) 
model implemented in CLM5 (GPPCLM5_FvCB). For example, GPPCLM5_FvCB 
fails to capture the diurnal shape of GPP at FI-Hyy and US-Ha1 (for 
example, the hysteresis in the afternoon; Fig. 3), and markedly under-
estimates daytime and growing-season GPP at US-Ha1 (Fig. 3b and  
Supplementary Fig. 10c).

At the global scale, applying the parsimonious LRU–PAR equation 
(Methods) leads to an annual GPP estimate of 157 ( ± 8.5) PgC yr−1 
(GPPOCS_LRU_PAR, gmes-explicit, the 2000–2010 average; Fig. 4a and Sup-
plementary Fig. 11). Implicit treatment of gmes only slightly changes 
the global annual mean GPP to 152 PgC yr−1 (Supplementary Table 1), 
implying that compensatory parameter adjustment might match the 
present-day global annual GPP magnitude but can distort the simu-
lated seasonal and spatial dynamics of OCS fluxes and thus GPP (Fig. 2). 
However, a constant LRU value (a simplified strategy adopted in the 
literature10,14) strongly affects the global GPP estimates (Fig. 4a, Sup-
plementary Table 1 and detailed discussion in Supplementary Text 2).

The global annual mean GPP inferred from the 18O signature of atmos-
pheric CO2 was 150–175 PgC yr−1 (ref. 7) and that inferred from soil res-
piration was 149−23

+29 PgC yr−1 (ref. 8). Our estimate of 157 (±8.5) PgC yr−1, 
inferred from plant OCS uptake, falls within these independent con-
straints but with a considerably narrower uncertainty range. However, 
all of these estimates are much higher than those derived from satellite 
optical remote sensing (for example, estimates from upscaling globally 
distributed flux tower measurements using machine learning5,40 or 
light use efficiency models13,41; Fig. 4a and Supplementary Fig. 11). 
Recently, higher GPP estimates (120–140 PgC yr−1) were obtained from 
satellite solar-induced fluorescence (SIF) remote sensing with the 
assumption of a linear SIF–GPP scaling42, and process-based models 
driven by satellite optical data (for example, leaf area index, fraction 
of PAR and vegetation indices)43,44; these estimates are still lower than 
our OCS-inferred GPP estimates. The generally lower existing estimates 
probably result from their shared biases or uncertainties such as the 
spatial representativeness of flux towers, NEE partitioning approaches 
and uncertainties in satellite remote sensing products, among others 
(detailed discussion in Supplementary Text 3). The global annual mean 
GPP directly simulated by CLM5 with the default FvCB photosynthesis 
module (GPPCLM5_FvCB) is 126 PgC yr−1, similar to estimates by existing 
satellite optical data-driven products. This low estimate probably 
results from parameter tuning to reproduce the widely cited bottom-up 
GPP estimates (for example, around 120 PgC yr–1)4,5. Our stronger 
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OCS-inferred GPP estimate is not due to the lack of exceptional El Niño/
Southern Oscillation events in the period from 2000 to 2010, as dem-
onstrated by our sensitivity simulation (Supplementary Text 4 and 
Supplementary Fig. 12).

Revisiting the spatial GPP patterns
Plant OCS uptake can offer new insights into the spatial and tempo-
ral variations of GPP, which previous global constraints such as 18O 
(ref. 7) and soil respiration8 were unable to resolve. Our OCS-based 
approach not only informs global GPP but also pinpoints where and 
when GPP is probably misrepresented in existing remote sensing-based 
products. To discern the spatiotemporal disparities of GPP from dif-
ferent approaches, we selected four widely used satellite optical 
remote sensing-driven GPP products (that is, MODIS45, GOSIF46, Flux-
Sat41 and FLUXCOM5 GPP) and compared them with our OCS-inferred 
GPP; Fig. 4b–e and Supplementary Fig. 13). The largest discrepancies 
occur in the pan-tropical rainforests. This finding is consistent with 
a recent study11 that estimated GPP from comprehensive plot-scale 
measurements and detailed carbon budget quantification47. The 
aforementioned study reported that the mature intact rainforests in 
the tropical Amazon have substantially stronger GPP than what the 

existing satellite optical remote sensing-driven products indicated. 
The poor performance of these satellite GPP products in the tropics 
is probably due to the impacts of frequent clouds and scarcity of flux 
tower observations that are needed for upscaling in this most produc-
tive region of the Earth6.

To evaluate the robustness of the OCS-inferred GPP estimates in the 
pan-tropics, we compared GPPOCS_LRU_PAR against in situ data at four tropi-
cal flux tower sites located in the central and eastern Amazon48 (Sup-
plementary Table 2). We found a close agreement in both dry and wet 
seasons at the four sites, particularly at the K67 and CAX towers (Supple-
mentary Fig. 14 and Supplementary Table 2). Additionally, GPPOCS_LRU_PAR 
outperforms GPPCLM5_FvCB (both gmes-implicit and gmes-explicit), which 
substantially underestimates GPP at all four sites in both dry and wet 
seasons (Supplementary Fig. 14). Furthermore, GPPOCS_LRU_PAR reveals 
substantially higher productivity in the western than central Amazon, 
as expected from the tropical forest aridity gradient there11. Such a 
contrast is consistent with OCO-2 SIF observations49 and inference from 
plot-scale measurements11 but not captured by GPPCLM5_FvCB (Fig. 3c,d) 
or other GPP data products (Supplementary Fig. 13). These emergent 
patterns have important implications on the carbon sink capacity of 
tropical rainforests and their resilience to stress under climate change, 
and thus should be thoroughly evaluated in the future with independent 
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ecosystem-scale measurements of OCS and GPP fluxes. Our findings 
suggest that in situ measurements of ecosystem-scale OCS uptake with 
concurrent CO2 fluxes are critically needed across the pan-tropics to 
understand their dynamical relationships, which ultimately will help 
verify the regional-scale GPP magnitude and spatiotemporal variations 
reported here.

Furthermore, current satellite-driven products also underestimate 
GPP in Northern Hemisphere mid-to-high latitudes, particularly during 
the growing season (Fig. 4c). This pattern is consistent with previous 
findings50 that utilized atmospheric OCS concentrations from ground 
measurements and aircraft campaigns to reveal a stronger GPP than 
existing TBMs in Northern Hemisphere high latitudes.

Impact of LRU on OCS-inferred GPP
LRU, a key parameter for OCS-based GPP inference, varies with VPD26,38 
and with PFTs17,39; yet this variability cannot be fully constrained owing 
to limited observations. Nevertheless, our simulations and uncertainty 
quantification indicate that the empirical LRU–PAR equation is broadly 
applicable across species. For example, GPP estimates based on the 
LRU–PAR relationship derived at FI-Hyy track the GPP diurnal and sea-
sonal cycles at US-Ha1 reasonably well (Fig. 3b and Supplementary 
Fig. 10c,d). Even in the tropical Amazon with markedly different envi-
ronments, this parsimonious equation still leads to a GPP magnitude 
and dry–wet contrast consistent with in situ measurements (Supple-
mentary Fig. 14). At the global scale, we used a Monte Carlo approach 
to quantifying the potential uncertainty from cross-PFT variability 
in LRU and in the LRU dependency on PAR. We synthesized field and 
laboratory measurements38,39 as a guidance to generate an ensemble 
of PFT-specific LRU–PAR relationships that mimic a diverse combina-
tion of PFT-dependent LRU–PAR relationships (details in Methods 
and Supplementary Text 5). The ensemble encompasses a wide range 
of LRU under ambient light conditions (Supplementary Fig. 15), but 
still yields a highly constrained uncertainty range of global GPP (that 
is, ±8.5 PgC yr−1; Fig. 4). This indicates that the sensitivity of the global 
annual GPP estimates to the cross-PFT variability in LRU and the LRU–
PAR relationship is scale-dependent. At local scales, this sensitivity 
can be substantial, as documented by chamber and/or canopy-level 
measurements38,51, but at the global scale, such sensitivity greatly dimin-
ishes. The dearth of field observations under varying light intensities 
and other environmental gradients across diverse biomes or species 
prevents a PFT-specific LRU formulation that varies not only with PAR 
but also with other environmental conditions (for example, VPD26). 
Field measurements across a diverse range of biomes and environ-
ments are urgently needed to characterize PFT- and species-specific 
LRU dependency on environmental conditions and plant traits.

Conclusions
Taking advantage of the close coupling between OCS and CO2 diffu-
sion processes, we investigated the impact of mesophyll diffusion on 
the dynamics of plant OCS uptake, and inferred the global GPP and 
its spatiotemporal patterns. Our bottom-up estimates of plant OCS 
fluxes provide robust priors for quantifying the global OCS budget and 
for ascertaining the sources and sinks of OCS on Earth with inversion 
approaches10,50. Harnessing the mechanistic constraint from plant OCS 
uptake on photosynthesis, our study provides a well-constrained con-
temporary GPP estimate. This new estimate is consistent with independ-
ent inferences from 18O and soil respiration but with a much-improved 
confidence level and fully resolved spatial and temporal dynamics. Our 
advances mark a key step towards constraining GPP dynamics. As GPP 
is a primary determinant of terrestrial carbon sinks and shapes climate 
trajectories, our findings lay a solid physiological foundation on which 
the understanding and prediction of carbon–climate feedbacks can 
be advanced.
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Methods

Model parameterization of ecosystem OCS fluxes
Ecosystem OCS uptake. Terrestrial ecosystem OCS uptake (termed 
FOCS) is modelled as:

F g= (OCS − OCS ) (1)OCS a
OCS

a m

in which ga
OCS is the aerodynamic conductance for OCS and is assumed 

to be equal to that for water; OCSa is the OCS concentration in the 
canopy air space, updated at each model time step; OCSm is the OCS 
concentration at a reference level. We used the global gridded monthly 
estimations of OCS concentration from ref. 52.

OCSa in equation (1) was updated at each time step on the basis of 
simulated plant and soil fluxes as follows:

)
(

( ) ( )
(2)

g F F g

OCS = OCS _ + dt/OCS

× OCS × − _ − _ 1 + dt × /OCS

a a prev cap

m a
OCS

ocs soil ocs veg a
OCS

cap

in which OCSa_prev refers to OCSa in the previous time step (the OCS 
concentration at the starting time step was set as 450 parts per trillion); 
dt is the CLM5 model time step; OCScap is the air capacity for the  
OCS exchange (with the unit of moles of air per square metre), calcu-
lated on the basis of OCS canopy air depth, which was assumed to be 
a constant (that is, 10 m); F _ocs soil and F _ocs veg are the OCS plant and soil  
fluxes whose calculation is described below.

OCS plant uptake. Plant uptake of OCS (termed as Focs_veg) is mod-
elled as:

F g g_ = OCS × ; =
1

+ + + (3)
g g g g

ocs veg a t
OCS

t
OCS

1 1 1 1

b
OCS

s
OCS

mes
OCS

CA
OCS

in which OCSa was updated for each model time step by equation (2), 
gt

OCS is the OCS conductance from the leaf boundary layer to the CA 
reaction site (with the unit of moles per square metre per second), 
calculated on the basis of leaf boundary layer conductance ( gb

OCS), 
stomatal conductance ( gs

OCS) and mesophyll conductance ( gmes
OCS), as 

well as a reaction rate coefficient for OCS hydrolysis by CA ( gCA
OCS, also 

termed as biochemical conductance).
Although CA is ubiquitous in plants, we considered only the OCS 

consumption by chloroplast CA, as existing experimental evidence 
showed that chloroplast CA dominates the total OCS consumption29. 
Following existing parameterization of plant OCS uptake16, we assumed 
that the pathway for OCS diffusion from ambient air to leaf chloroplast 
is similar to that of CO2 as represented in current land surface models. 
Analogous to CO2, the boundary layer and stomatal conductance of 
OCS can be scaled from those of water vapour (denoted as gs

H O2  and 
gb

H O2 , respectively)37 following:

g
g

g
g

=
1.56

, =
1.94

(4)
b
OCS b

H O

s
OCS s

H O2 2

The mesophyll conductance of OCS ( gmes
OCS) was assumed to be equal 

to that of CO2 ( gmes
CO2)18, as a substantial part of mesophyll diffusion is 

in the aqueous phase, and the aqueous diffusivities of these two gases 
are similar22,23. However, unlike gs

H O2  and gb
H O2 , gmes

CO2 was not repre-
sented in the standard version of CLM5. In this study, we implemented 
both implicit and explicit considerations of mesophyll diffusion to 
model the OCS plant uptake (see descriptions below).

CLM is a two-big-leaf model, which resolves canopy leaves into sun-
lit and shaded leaves. Therefore, gt

OCS was calculated respectively for 
sunlit and shaded leaves and aggregated as follows:

g g g= _ × LAI + _ × LAI (5)t
OCS

t sun
OCS

sun t sha
OCS

sha

in which g _t sun
OCS  and g _t sha

OCS  are the gt
OCS for sunlit and shaded leaves, 

respectively, and LAIsun and LAIsha are the leaf area index for sunlit  
and shaded leaves, respectively.
OCS plant model with implicit mesophyll diffusion. Independent 
studies have shown that both the mesophyll conductance (gmes

OCS) and 
CA activity (gCA

OCS) tend to scale with the maximum carboxylation rate 
of Rubisco (Vcmax)53,54. Therefore, an alternative approach was proposed 
to combine the two processes of gmes

OCS and gCA
OCS into a single apparent 

conductance gi
OCS for the calculation of the overall conductance gt

OCS:

g =
1

+ + (6)
g g g

t
OCS

1 1 1

b
OCS

s
OCS

i
OCS

In equation (6), gi
OCS represents the internal conductance of OCS 

diffusion from the intercellular air space to CA reaction sites and is 
assumed to be proportional to Vcmax (ref. 16):
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0

in which α is a scaling factor (1,400 for C3 species and 8,862 for C4 spe-
cies25); fw(θ) is the water stress function (ranging from 0 to 1) imple-
mented in CLM5; p is the atmospheric pressure; p0 is the reference 
surface pressure (1,000 hPa); Tcan is the canopy temperature, which is 
prognostically calculated by CLM5; and T0 is the reference temperature 
(273.15 K). The water stress function fw(θ) is:

∑f θ f w θ( ) = × ( ) (8)
i

n

i iw root,

in which froot,i denotes the root fraction within soil layer i; and wi refers 
to the plant wilting factor related to soil water content θ.
OCS plant model with explicit mesophyll diffusion. Although mes-
ophyll diffusion was not represented in the standard version of CLM5, 
attempts have been made to represent the mesophyll conductance of 
CO2 ( gmes

CO2)24 in some ways. Here we assumed gmes
CO2 to be equal to gmes

OCS 
(ref. 18), and leveraged a process-based gmes model24 to explicitly cal-
culate gmes. gCA

OCS, which depends on CA activity, is assumed to be con-
stant (0.055 mol m−2s−1) following ref. 18:

g = 0.055. (9)CA
OCS

This value (0.055) was estimated from measurements made at 
US-Ha1, a temperate deciduous forest, but works well also at a boreal 
needleleaf forest site (FI-Hyy; Fig. 1). This cross-site applicability sug-
gests that the simulated OCS fluxes may not be sensitive to the value 
of gCA

OCS. We also evaluated the impact of the temperature dependence 
of gCA

OCS, using equation (10), and found no notable effects on the sim-
ulated OCS fluxes (Supplementary Fig. 17).


















g

E
R T T

= 0.8 × 0.055 × exp
1

−
1

(10)CA
OCS 0

ref L

in which E0 is the activation energy (40 kJ mol−1), R is the ideal gas 
constant (8.3145 J mol−1 K−1), Tref denotes the reference tempera-
ture (293 K), and TL is leaf temperature, prognostically calculated  
by CLM5.

Process-based gmes model. The authors of ref. 24 developed the first 
global process-based gmes

CO2 model for C3 plants, which was success-
fully applied to CLM4.5. The model considered gmes

CO2 variations with 
leaf structures and environmental conditions (for example, tempera-
ture and water stress), following:



g g f f T f θ= × (LAI) × ( ) × ( ) (11)mes
CO

max0 I T L w
2

in which gmax0 is the maximum gmes
CO2 under non-stressed conditions 

(that is, the presence of ample soil water at 25 °C); fI(LAI) refers to the 
vertical variation of gmes

CO2  as a function of LAI; fT(TL) represents the 
response function of gmes to leaf temperature (TL, calculated by CLM5); 
and fw(θ) is the water stress function given in equation (8). gmax0 is 
given by

g a M= × (12)b
max0 a0

in which Ma0 represents the leaf dry mass per unit area (Ma; with the 
unit of grams per square metre) at the canopy top, which can be calcu-
lated as two times the inverse of the canopy-top specific leaf area SLA0 
(a parameter in CLM5). In CLM5, Ma differs from 1/SLA0 (with the unit 
of grams of carbon per square metre) by a factor of two, as the latter 
includes only carbon fraction; the carbon content is assumed to be 
50% of leaf dry mass24. a and b are two constants (a = 24.240338, 
b = −0.6509)24. This gives gmes

CO2  the unit of moles per square metre 
per second per pascal, which can be converted to moles per square 
metre per second if multiplied by surface pressure.

As CLM5 divides the canopy leaves into sunlit and shaded fractions, 
the function fI in equation (11) was also defined for sunlit (fI_sun) and 
shaded (fI_sha) fractions, respectively:

f
k

k k

k k

k
(LAI) =

+
×

1 − exp[− ( + )LAI]

1 − exp(− × LAI)
(13a)I_sun

b

g b

g b

b







( )
( ) ( ) ( ) (13b)
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k k k

k k k k k k k

k k

_ (LAI) =

+

− + exp − LAI + exp − + LAI

exp(− LAI) − 1 + LAI

I sha

b

g g b

b g b g g g b

b b

in which kb is the direct beam extinction coefficient; kg is a composite 
parameter with an empirical value of 0.08997.

The temperature response function fT(TL) in equation (11) is given by:

f T
c H R T

S T H R T
( ) = exp

− Δ /( × )
1 + exp((Δ × − Δ )/( × ))

(14)T L
a L

L d L











in which c is a scaling constant (20), HΔ a is the activation energy (49.6 ×  
103 J mol−1), R is the ideal gas constant, SΔ  is an entropy term (1.4 ×  
103 J mol−1 K−1), and HΔ d is the deactivation energy (437.4 × 103 J mol−1).

The authors of ref. 24 also applied the simulated gmes
CO2 to facilitate a 

more accurate photosynthetic estimation, as CO2 concentrations drop 
considerably along mesophyll diffusion pathways, expressed by  
equation (15):

C C A g= − / (15)c i mes
CO2

in which Cc and Ci are the CO2 partial pressure (with the unit of pascals) 
inside leaf chloroplasts and that at the intercellular air space; A is the 
net carbon assimilation rate (with the unit of micromoles per square 
metre per second).

The authors of ref. 21 gave a relationship to estimate the true photo-
synthetic parameters (that is, the gmes-including parameters) from the 
CLM-modelled gmes-lacking parameters once gmes

CO2 is known:

y w p
w

g v
= × exp

( ) +
(16)

u

q
mes
CO2











in which y denotes parameters for a gmes-explicit representation (includ-
ing Vcmax and Jmax at a reference temperature of 25 °C) and w denotes 

their counterparts in a gmes-implicit representation; p, q, u and v are 
empirical constants: they are 0.034, 1.1253, 0.8787 and 0.4801 for Vcmax 
and 0.2935, 1.4838, 0.0858 and 0.1726 for Jmax.

OCS soil flux. We used a mechanistic model55 to simulate the soil 
flux of OCS (Focs_soil). This model described the OCS uptake or pro-
duction together with the OCS diffusion, respectively, for each soil 
column of a uniform temperature, soil moisture and porosity. The 
Ogée soil model has been used to infer reaction rate parameters 
across a range of biomes and land cover types in several labora-
tory studies56,57. It has also been applied to SiB4, showing a good  
performance25.

The Ogée soil model simplifies the soil OCS flux (Focs_soil) as:
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(17)ocs soil s a

1
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p
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in which k is the first-order rate constant for CA-mediated OCS hydrol-
ysis (with the unit of per second); B is the non-dimensional solubility 
of OCS in water (with the unit of moles per cubic metre of H2O/moles 
per cubic metre of air); θ is the volumetric soil water content (with the 
unit of cubic metres per cubic metre); D is the soil OCS diffusivity (with 
the unit of cubic metres of air per cubic metre of soil per second); OCSs_a 
is the OCS mole fraction at the soil–air interface, assumed to be identi-
cal to the OCS mole fraction at the canopy air space; z1 is D/(kBθ); P is 
the OCS production rate (with the unit of moles per cubic metre per sec-
ond); and zp is the soil depth (= 1.0 m). Various functions in equation (17) 
are modelled as follows.

The rate constant k in equation (17) is given by:

k f k
x T

x T
= × ×

( )
( )

(18)CA uncat
CA

CA ref

in which fCA is the CA enhancement factor (see Supplementary Table 4 
for its values across different PFTs); kuncat is the uncatalysed reaction 
rate; xCA(T) and xCA(Tref) are temperature response functions. The 
uncatalysed reaction rate kuncat depends mostly on the temperature T 
and pH (assumed to be constant at 4.5):
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ref

−p +pH
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in which pKw is the dissociation constant of water (that is, 14.0). For 
agricultural patches, the kuncat value was designated as 1/5 of the value 
calculated from equation (19) as agricultural soil was reported to have 
a lower kuncat (ref. 58).

The temperature response function xCA(T) in equation (18) is given by:

x T
H RT

H RT S R
( ) =

exp(−Δ / )
1 + exp(−Δ / + Δ / )

(20)CA
a

d d

in which HΔ a, HΔ d and SΔ d are thermodynamic parameters with values 
of 40 kJ mol−1, 200 kJ mol−1 and 660 J mol−1 K−1, respectively

The non-dimensional solubility B of OCS in water in equation (17) is 
related to Henry’s law constant KH (with the unit of moles per square 
metre per pascal) and depends on temperature:

( )
B k R T k

R
= × × ; = 2.1 × 10 × exp

24,900 −
(21)

T
H H

−4

1 1
298.15
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The soil OCS diffusivity D in equation (17) is calculated as25:

D D D B D D T τ ε D D τ θ= + × ; = ( ) × × ; = × × (22)eff,a eff,l eff,a 0,a a a eff,l 0,l l

in which Deff,a and Deff,l are the effective diffusivities of gaseous OCS 
and dissolved OCS through the soil matrix, respectively; D0,a refers to 
the binary diffusivity relative to temperature as: D0,a(T) = D0,a(298.15 K)
(T/298.15 K)1.5, in which D0,a(298.15 K) (or D0,a(25 °C)) equals 
1.27 × 10−5 m2 s−1; D0,l is also relative to temperature: D0,l(T) = D0,l(T0)
(T/T0 − 1)1.5, in which T0 is 216 K (−57.15 °C) and D0,l(T0) can be calculated 
as D0,l(298.15 K)/(298.15 K/T0 − 1)1.5 with D0,l(298.15 K) equal to 
1.94 × 10−9 m2 s−1; τa and τl are the tortuosity factors used to describe 
the tortuous movement through the air- or water-filled pore space. We 
selected the τa function59 formed as (0.2(εa/ϕ)2 + 0.004)/ϕ, in which εa 
is the volumetric air content and ϕ is the total soil porosity, and τl func-
tion60 formed as θ7/3/ϕ2, in which θ is the volumetric water content as 
they are independent of pore-size distribution25.

The OCS production rate P in equation (17) is assumed to be uniform 
from the surface to depth zp (= 1.0 m) and controlled by soil temperature 
Tsoil (in degrees Celsius):

P j m T= × exp( × ) (23)soil

in which j and m are empirical parameters whose average values across 
different PFTs are given in Supplementary Table 4.

Inference of GPP from plant OCS fluxes
OCS plant uptake is used to infer GPP, once the concentration-normalized 
ratio of OCS and CO2 uptake (LRU) is known:

FGPP = _
[CO ]
[OCS]

1
LRU

(24)ocs veg
2 a

a

in which [CO2]a denotes the ambient concentration of CO2. For infer-
ring GPP from site-level simulations, site measurements of [CO2]a and 
[OCS]a were used herein; whereas for inferring GPP at the global scale, 
model simulations of [CO2]a and [OCS]a were used.

LRU has been estimated in some experimental studies17. Measure-
ments carried out in 22 C3 plant species reported cross-species ranges 
of LRU with a mean value of 1.61 (±0.26)39, which has been adopted by 
previous studies in evaluating GPP–OCS relationships at sites or glob-
ally14,61. However, a constant LRU cannot accurately translate plant OCS 
uptake to GPP, as LRU was observed to decrease with increasing PAR at 
both the leaf and ecosystem scales38,51. Here we applied two approaches 
to calculating the LRU for C3 species (a constant LRU of 1.16 was used 
for C4 species for both approaches, as C4 species were reported to have 
a much lower LRU29,61) and obtained two estimates of OCS-inferred GPP 
from equation (24). First, a constant LRU value of 1.61 was adopted, 
leading to a GPP estimate termed as GPPOCS_LRU_constant. Second, we con-
sidered the LRU variations in response to light intensity, and adopted 
the empirical equation between LRU and PAR proposed previously38 at 
FI-Hyy (equation (25)). The applicability of the LRU–PAR relationship 
in estimating GPP (the resulting GPP is termed as GPPOCS_LRU_PAR) was 
evaluated at two sites in different biomes (Fig. 3 and Supplementary 
Fig. 10). The two OCS-inferred GPPs were compared with each other 
and also with that directly simulated by the CLM5 with the default FvCB 
model (termed GPPCLM5_FvCB; Supplementary Table 5).

LRU = 607.2623/PAR + 0.5705 (25)

Comparison of OCS-inferred GPP with in situ canopy-scale GPP 
in Amazon rainforests
Both OCS-inferred and CLM5 FvCB-simulated GPP were compared with 
in situ GPP partitioned from in situ NEE measurements at four tropical 

sites located in the central and eastern Amazon. Here the GPP dataset 
came from the Large-Scale Biosphere-Atmosphere Experiment in the 
Amazon Ecology dataset62, which has been harmonized across projects 
with additional quality control checks carried out, and aggregated to 
several time intervals. The four sites were selected (following ref. 48) 
because: they represent mature intact tropical forests in the Amazon 
that are highly productive, and they span a range of dry-season intensi-
ties and lengths. The simulation design and model–data comparison 
at these four sites are provided in Supplementary Text 6.

Monte Carlo simulations of uncertainties in GPP estimates arising 
from cross-PFT variabilities in LRU and its light dependency
GPP uncertainty may arise from cross-species or PFT variabilities in 
LRU and its light dependency. To systematically assess this uncertainty, 
we combined best available field measurements with Monte Carlo 
simulations to generate ensemble estimates of GPP based on diverse 
combinations of PFT-specific LRU–PAR relationships. The core of this 
approach is to construct diverse combinations of PFT-specific LRU–
PAR relationships guided by field measurements. To achieve this, we 
generated ensemble LRU–PAR relationships by randomly sampling 
data points from two types of field dataset to mimic cross-species vari-
ability (Supplementary Text 5). The two field datasets used here are: 
leaf-level measurements of ref. 38, so far the only publicly available 
leaf-scale dataset with paired LRU–PAR along a full range of PAR con-
tinuum and with concurrent canopy-level OCS flux measurements that 
can facilitate scaling from leaf to canopy scales; and datasets compiled 
in ref. 39, so far the only dataset available that has LRU measurements 
under multiple standardized PAR levels across diverse PFTs and species. 
Reference 38 provided continuous and paired LRU–PAR measurements 
in the full PAR range. It offers the baseline ‘shape’ (functional relation-
ship) between LRU and PAR that all plant species may follow (that is, a 
linear relationship between LRU and 1/PAR; or a hyperbolic relationship 
between LRU and PAR). Then we applied the cross-PFT variability by 
varying the slopes and intercepts of the baseline linear shapes. This was 
achieved by imposing random variations (representing cross-species 
variability) to the ‘baseline’ shape, with the random variation gener-
ated from the dataset of ref. 39. We chose measurements from ref. 39 
(synthesized in its Table II) to represent species variability in LRU and 
its PAR dependency, primarily because: it covered LRUs from 22 species 
in total belonging to 4 different biome types; it provided LRU values for 
each species at 3 different (and standardized) light levels (that is, 179, 
352 and 1,889 μmol m−2 s−1), which allowed us to quantify LRU variability 
arising from species differences under multiple light levels; and these 
LRUs were measured at the same environmental conditions including 
CO2 concentration, air temperature and humidity, ensuring that the 
LRU variability primarily comes from PAR for each species.

Although there are other studies that synthesized LRU values across 
species from the literature (for example, ref. 17), these values came 
from different studies under diverse combinations of environmental 
conditions, without standardizing PAR levels or controlling other envi-
ronmental factors, precluding the possibility to systematically quantify 
the variability of LRU–PAR dependency across species. There are also 
attempts to use the optimization theory to generate global mapping of 
LRU (for example, ref. 63), but challenges still remain with this approach 
in quantifying LRU–PAR relationships under unsaturated light condi-
tions. More field measurements are needed to better characterize LRU 
variability with light across PFTs.

Design of CLM5 model simulations
We used the Community Earth System Model CLM5 as the TBM for OCS 
simulation. Four simulations were carried out, with different param-
eterizations of gt

OCS (Supplementary Table 6). For simulation 1 (gmes- 
implicit simulation), we implemented the OCS plant model with implicit 
mesophyll diffusion16. For simulation 2 (gmes-explicit simulation), the 
OCS plant model with explicit mesophyll diffusion was implemented, 



with gmes calculated by a process-based model24. Comparison between 
simulations 1 and 2 shows the impact of mechanistic consideration of 
mesophyll diffusion in OCS flux simulation. For simulation 3 (gmes- 
excluding simulation), we assumed gmes to be infinite (that is, ignoring 
mesophyll resistance) and computed gt

OCS with only gb
OCS, gs

OCS and 
gCA

OCS. Comparison between simulations 2 and 3 shows the effect of 
mesophyll diffusion on OCS fluxes. For simulation 4, we implemented 
explicit gmes while using a temperature response function for gCA

OCS 
(equation (10)). Comparison between simulations 2 and 4 shows the 
impact of gCA

OCS parameterization on OCS simulation.
Each simulation was run with active biogeochemistry and crop mod-

els and was preceded by a spin-up for 100 years. We carried out both 
global simulations and point simulations. For global simulation, all 
scenarios from simulation 1 to simulation 4 were performed from 2000 
to 2010. Meteorological data from the Global Soil Wetness Project 
Phase 3 National Centers for Environmental Prediction dataset on a 
3-h interval (available from 1901 to 2014) were used as meteorological 
forcing. Point simulation was run at two field sites: FI-Hyy (2013–2017) 
and US-Ha1 (2012–2013), for which OCS observations exist across most 
months within a year38,51 and partitioned GPP estimates were also avail-
able for growing seasons38,64 (Supplementary Table 3). For each site, 
the PFT in the model simulation was set as consistent with the site land 
cover type, and site observations of meteorological conditions were 
used as meteorological forcing.

Data availability
The CLM5 simulation output related to this study is available at https://
doi.org/10.7298/mxg9-7176.
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