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Leaf economic strategies drive global
variation in phosphorus stimulation of
terrestrial plant production
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Plant biomass and its allocation are fundamental for understanding biospheric
matter production. However, the impacts of atmospheric phosphorus (P)
deposition on species-specific biomass and its allocation in global terrestrial
plants remain unclear. By synthesizing 5548 observations of plant biomass and
its allocation related to P additionworldwide, we find that P addition increases
plant biomass by an average of 35% globally. This increase varies across plant
functional groups, with stronger responses in deciduous (45%), C3 (36%), and
N2-fixing plants (54%) than in evergreen (28%), C4 (19%), and non-N2-fixing
plants (31%), respectively. Plants possessing traits indicative of an acquisitive
strategy, such as higher nutrient concentrations and specific leaf area, faster
photosynthetic rates and shorter leaf lifespan, are particularly responsive to P
addition. Furthermore, P addition promotes a greater allocation of biomass to
aboveground than belowground organs, resulting in a 5% decrease in root-to-
shoot ratio.Ourfindings provide global-scale quantifications of howP addition
regulates biomass accumulation and allocation strategies in terrestrial plants,
offering critical insights for predicting the response of terrestrial carbon sto-
rage to rising atmospheric P deposition.

Plant biomass and its response to environmental changes sig-
nificantly affect ecosystem function and global carbon cycles1.
Allocation of plant biomass among organs is crucial for growth,
survival, and environmental acclimation2, influencing carbon
residence time in organs and carbon cycling within forest
ecosystems3. However, nutrient availability, especially phos-
phorus (P), often constrains terrestrial plant biomass changes, as
it is vital for growth, functioning, and reproduction4. In recent
decades, anthropogenic P inputs from atmospheric deposition,
livestock slurry manure applications, and mineral P fertilizers

have increased the P availability in terrestrial ecosystems5,6. Such
changes have substantial impacts on plant growth and biomass
accumulation, thereby affecting ecosystem carbon stocks7.
Despite this, prior studies mainly examined the effect of abiotic
factors on aboveground biomass responses to P addition at the
plant community level7,8. Uncertainties persist about how biotic
factors drive variation in plant biomass and allocation responses
to P addition at the species level, posing challenges for accurate
projection of future terrestrial carbon stock dynamics with con-
tinued global change.
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One major source of uncertainties in plant responses to P lies in
the diverse response patterns expected among different plant func-
tional groups. This diverse response patterns fundamentally arise from
the variation in P acquisition strategies, nutrient use strategies, and
species-specific nutrient requirements9. For instance, shrubswith deep
root systems and potent P-mobilizing exudates generally have a
superior P acquisition ability from deeper soil layers and are better
acclimated to low-P soils10. Conversely, graminoids with shallow root
systems and fewer exudate releases may be more responsive to P
addition11. Nutrient use strategies, shaped by leaf habit and form, may
also contribute to varying responses to P addition12. Higher nutrient
resorption efficiency can reduce dependence on soil nutrients and
allowplants to conserve nutrients for survival in stressful habitats or to
maintain high physiological activity during the growing season13,14.
Consequently, coniferous versus broadleaf species and deciduous
versus evergreen plants—due to inherent differences in nutrient
resorption efficiency14—are expected to exhibit distinct responses to P
addition. Additionally, species differ in their intrinsic nutrient
requirements. For instance,manyN2-fixingplants generally have ahigh
P demand due to their limited ability to acquire P in low-P soils and the
high energy cost of nitrogen (N) fixation15. Similarly, C4 plants, which
are inherently better adapted to P-poor habitats, tend to be less
responsive to P addition than C3 plants16. Consequently, plant
responses to P addition are expected to vary considerably depending
on growth form, leaf habit, leaf morphology, photosynthetic pathway,
and N2-fixing capability17,18. However, variation in plants responsive-
ness to P addition among functional groups will be obscured at the
plot level due to community interactions, which can mask species-
specific patterns. Therefore, it is imperative to investigate plant
responses to P addition at the species level.

In recent decades, the study of leaf functional traits has revealed
key differences in resource use strategies among plant functional
groups19,20, which may impact plant responses to P addition. The leaf
economics spectrum (LES) framework identified key functional traits
that represent trade-offs between fast acquisition and conservation of
resources20. Specifically, species with an acquisitive strategy often
exhibit greater specific leaf area (SLA), faster photosynthetic rates,
higher leaf N and P concentrations ([N] and [P]), and shorter leaf life-
span. These traits contribute to rapid plant growth and biomass
accumulation21,22, potentially enhancing responsiveness to P addition.
In contrast, species with a conservative strategy exhibit the opposite
set of trait values, associated with slower growth and longer leaf
lifespan22,23, potentially making them less responsive to P addition.
Therefore, trait variation across plant functional groups reflects dis-
tinct growth and resource use strategies, likely driving species-specific
biomass responses to P addition24,25. Accordingly, we hypothesize that
leaf functional traits mediate plant biomass responses to P addition,
with the magnitude of response increasing along the continuum from
conservative to acquisitive LES strategies. However, empirical evi-
dence supporting this hypothesis at a global scale is currently lacking.

Modifying biomass allocation among different plant organs is an
adaptive strategy that maximizes resource utilization to support
optimal plant growth and survival. This process is influenced by
resource supply26. The responses of the leaf, stem, and root mass
fractions to resources supply are considered to be a functional equi-
librium, such as the balance between photosynthetic carbon gain in
leaves and nutrient uptake by the root system27,28. When nutrient
supply alters the resource balance, plants adjust their biomass allo-
cation to restore an equilibrium adapted to the new conditions29.
For example, N addition typically leads to greater biomass investment
in aboveground organs, increasing light interception and
photosynthesis30,31. According to the optimal partitioning theory, plant
growth is maximized when biomass is proportionally allocated to the
organs responsible for acquiring the most limiting resource32. Based
on this framework, we hypothesize that P addition will similarly alter

resource availability, prompting plants to allocate more biomass to
aboveground organs. However, globally, our knowledge regarding
P-addition effect on biomass allocation patterns remains limited.

Here, we compile a global database from 317 publications,
encompassing 5548 observations of plant responses to P addition
across various controlled and field environments (Fig. 1a, and Sup-
plementary Fig. 1 and Supplementary Tables 1 and 2), to quantify the
effects of P addition on plant biomass and its allocation globally. We
first estimate the average effect size across all terrestrial plant biomass
responses and assess whether the effect size is influenced by evolu-
tionary history. We also evaluate whether plant functional groups
exhibit distinct responses to P addition by comparing the average
effect size within each functional group. Second, we investigate the
links between plant biomass response and leaf economics strategies as
described by the leaf economics spectrum (LES). We further identify
the key drivers of plant responses, including leaf functional traits, cli-
matic factors, soil properties and fertilization regimes. Third, we
quantify the effect of P addition on biomass allocation by estimating
the average effect size for different plant organs and their respective
mass fractions.

Results
Effects of P addition on plant biomass among plant
functional groups
Across all terrestrial plants examined in this study, we observed that P
addition led to a 35% increase (95% CI: 29.6–40.7%) in terrestrial plant
biomass on average, with positive responses in 89% of all cases
(Fig. 1c). We further examined the phylogenetic distribution of the
P-addition effect on plant biomass and found no significant phyloge-
netic signal, as the effect sizes were similar among phylogenetic
groups (Fig. 1b and Supplementary Fig. 2, p >0.05).We then quantified
the variation in the P-addition effect on plant biomass across various
plant functional groups. Although there was no significant difference
in the P-addition effect among growth forms (p = 0.082), we observed
increases in biomass for tree (38%), shrubs (31%), graminoids (27%) and
forbs (36%) (Fig. 2a). However, the P-addition effect did vary based on
N2-fixing taxa, leaf habit and photosynthetic pathway (Fig. 3a and
Supplementary Fig. 3). Biomass significantly increased for N2-fixing
(54%, 41.2–67.2%) and deciduous plants (45%, 30.8–60.2%) when
compared to non-N2-fixing (31%, 24.7–36.8%) and evergreen plants
(27.5%, 16.7–39.4%) (Fig. 3a and Supplementary Fig. 3, p <0.001).
Moreover, the P-driven biomass increasewas greater in C3 plants (36%,
30.2–42.2%) compared to C4 plants (19%, 8.4–30.9%) (Fig. 3a and
Supplementary Fig. 3). Lastly, the P-addition effect on plant biomass
varied depending on the experimental setting, with generally greater
effects observed in controlled environments compared to in field
environments (Figs. 2b, 3b).

The links between plant biomass response and leaf
economics traits
We further delved into the correlations of the P-addition effect on
plant biomass with leaf functional traits and abiotic factors (i.e. climate
variables, soil properties and fertilization regimes). These investiga-
tions revealed a dependence of the P-addition effect on leaf functional
traits (Figs. 4 and 5). Specifically, the P-addition effect was significantly
positively correlated with the first principal component (PC1) derived
from a principal component analysis of multiple leaf functional traits
(Fig. 4). This PC1 represents traits associated with an acquisitive
strategy, such as thin leaves, high nutrient concentrations, fast pho-
tosynthetic rates, and short leaf lifespan. Furthermore, we observed
significant positive correlations between the P-addition effect and
both leaf [N] and SLA (Fig. 5 and Supplementary Table 3), and a sig-
nificant, negative correlation with the leaf C:N ratio. Notably, these
correlations were consistent across both controlled and field experi-
mental settings (Fig. 5), highlighting the robustness of the correlations
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Fig. 1 | Geographical location, phylogenetic tree, and over effect sizes of
phosphorus (%) addition on plant biomass. a Geographical location of study
sites included in this meta-analysis. Different colored points represent different
growth forms, with the point size indicating the number of observations for each
site. The map was created using public-domain data from Natural Earth, accessed
via the ‘maps’ package in R. b Phylogenetic tree of the 423 plant species assessed
this meta-analysis. The phylogenetic signal in the effect sizes was estimated using
Pagel’s λ via maximum likelihood. A value of Pagel’s λ ≈0 and p >0.05 based on a
two-sided likelihood ratio test indicates an insignificant phylogenetic signal.

Different colored trees represent different phylogenetic groups. c The distribution
of effect sizes of P addition on plant biomass. The lnRR indicates the log response
ratio, and isquantified as the log-transformed ratioof plant biomass inP addition to
the corresponding mean value of the control treatment; n represents the sample
size for positive and negative effects of P addition on plant biomass. Dark blue and
salmon indicate positive and negative effect sizes, respectively. Claybank dashed
line represents the overall effect size as 35% (with 95% confidence interval in par-
entheses). Source data are provided as a Source Data file.
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between these leaf traits and biomass response to P addition. These
findings together suggest that plants with an acquisitive strategy are
more responsive to P addition. Additionally, the P-addition effect was
positively correlated with abiotic factors, such as mean annual tem-
perature (MAT), mean annual precipitation (MAP), fertilization dura-
tion and P addition rates (Supplementary Fig. 4, and Supplementary
Table 4). Conversely, negative correlationswere foundwith soil total N
and P concentrations and soil pH (Supplementary Fig. 5 and Supple-
mentary Table 4), indicating that biomass responses to P addition are
reduced in nutrient-rich soils.

To disentangle the influences of leaf functional traits from
those of abiotic factors on P-addition effect on plant biomass, we
first assessed the relative importance of these predictors using
boosted regression tree (BRT) analyses. Results showed that both
PC1 and key leaf functional traits (i.e. SLA, leaf [N], and leaf C:N
ratio) that contributed to PC1 were the important driver of var-
iation in the P-addition effect on plant biomass (Supplementary
Figs. 6a, 7a). Partial dependence plots from the BRT models
(Supplementary Figs. 6b, 7d, f, g) confirmed that the correlations
of P-addition effect with PC1 and the key leaf functional traits
derived were also consistent with those without controlling for
other potential influencing factors (Figs. 4, 5). Furthermore, we
evaluated the direct and indirect effects of leaf functional traits
(indicated by PC1) and abiotic factors on plant biomass response
(lnRR) through a structural equation modeling (SEM) analysis.
The SEM results indicated that climate variables and soil prop-
erties had large indirect effects on lnRR through PC1, together
with the largest direct effect of PC1 itself on lnRR (Fig. 6). Col-
lectively, both BRT and SEM analyses robustly demonstrated that

leaf economic strategies importantly determined the variation in
P-addition effect on plant biomass.

Effects of P addition on allocation of plant biomass
In addition to assessing plant biomass responses, we evaluated the
effect of P addition on biomass allocation. Our results revealed that P
additionhadvarying effects on theplant biomassof across organ types
(Fig. 7a, p <0.001). Leaf and stem biomass showed the strongest
responses, increasing by 58% and 55%, respectively, followed by shoot
biomass, which increased by 48%. In contrast, root and reproductive
biomass showed significantly smaller responses to P addition,
increasing by 40% and 35%, respectively (p <0.05). Consequently, P
addition shifted biomass allocation patterns, increasing leaf, stem and
shoot mass fractions by 6% (1.1%–11.3%), 3% (−0.7%–7.1%), and 3%
(0.5%–4.9%), respectively, while decreasing the root mass fractions
and root-to-shoot ratios by 3% (−6.7%–0.6%) and 5% (−10.0%–−0.6%),
respectively (Fig. 7b). These findings suggest that P addition shifts the
functional equilibrium between aboveground and belowground
organs, promoting greater biomass allocation to aboveground organs.
To further explore these dynamics, we investigated how P addition
influences biomass allocation across plant functional groups, and its
correlations with leaf functional traits and abiotic factors. Surprisingly,
plant biomass allocation responses to P addition did not significantly
differ among plant functional groups (Supplementary Fig. 8), and
showed no significant correlations with either the PC1 depicting leaf
economic strategies or individual leaf trait (Supplementary Figs. 9a–c,
10a). Abiotic factors also exerted very limited explanatory power
on the response of plant biomass allocation (Supplementary
Figs. 9d–f, 10a).
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Fig. 2 | Effects of phosphorus (P) addition on plant biomass across growth
forms and experimental settings. a Average effects (%) of P addition on plant
biomass among growth forms for all data. b Average effects (%) of P addition on
plant biomass under different experimental settings. Points and error bars repre-
sent the bootstrapped mean and 95% confidence interval, respectively. The num-
bers outside and inside parentheses indicate the number of observations and plant
species, respectively. If the 95% confidence interval do not overlap zero, the effects

of P addition on plant biomass are considered significant (two-sided test, p <0.05);
otherwise, the effect of P addition is considered not significant. The p values indi-
cate a significant level between growth forms or experimental settings, based on
linear mixed models with ‘growth form’ or ‘experiment type’ as fixed factors and
‘study’ as a random factor, tested using two-sided F-tests with Satterthwaite
approximation of degrees of freedom. Source data are provided as a Source
Data file.
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Discussion
Our meta-analysis provides a comprehensive overview of the effects
of P addition on plant biomass and its allocation, identifying key
drivers of variation in plant responses across the globe. We dis-
covered that P addition, on average, augmented plant biomass by
35%, with the response to P addition being phylogenetically con-
served (Fig. 1b, c). However, the degree of responsiveness varied
based on plant N2-fixing taxa, leaf habit, and photosynthetic pathway
(Fig. 3). Biomass responses to P addition were strongly linked to leaf
functional traits, with plants exhibiting acquisitive traits being more

responsive to P addition (Figs. 4–6). Moreover, P addition shifted
biomass allocation patterns by increasing the mass fractions of
leaves, stems and shoots (Fig. 7), suggesting a preferential allocation
of biomass to aboveground organs in response to enhanced nutrient
availability.

Plant functional groups, defined by N2-fixing taxa, leaf habit, and
photosynthetic pathway, influenced the responseof plant biomass to P
addition (Fig. 3a). N2-fixing plants exhibited greater biomass accumu-
lation under P addition than non-N2-fixing plants (Fig. 3a). This
enhanced response is likely due to the greater P demands of many N2-
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Fig. 3 | Effects of phosphorus (P) addition on plant biomass across plant
functional groups and experimental settings. aAverage effects (%) of P addition
on plant biomass among plant functional groups for all data. b Average effects (%)
of P addition on plant biomass under different experimental settings. Points and
error bars represent the bootstrapped mean and 95% confidence interval,
respectively. The numbers outside and inside parentheses indicate the number of
observations and plant species, respectively. If the 95% confidence interval do not

overlap zero, the effects of P addition on plant biomass are considered significant
(two-sided test, p <0.05); otherwise, the effect of P addition is considered not
significant. P values indicate significant level between experimental settings or
functional groups, based on linear mixed models with ‘experiment type’ or ‘func-
tional type’ asfixed factors and ‘study’ as a random factor, testedusing two-sidedF-
tests with Satterthwaite approximation of degrees of freedom. AM arbuscular
mycorrhizal, EcM ectomycorrhizal. Source data are provided as a Source Data file.
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fixing legumes, which is crucial for overcoming their limited P acqui-
sition capacity in low-P soils33. Enhanced P availability supports sym-
biotic N2 fixation and nodule formation, balancing the additional N
from symbiotic N2 fixation so that both N and P demands can be
met15,34. Deciduous plants displayed a stronger biomass response of
plant biomass to P addition compared to evergreen plants (Fig. 3a).
This may stem from their shorter leaf lifespan and faster photo-
synthetic rates during a short growing season, enabling efficient
nutrient use14,16,35. Conversely, C4 plants exhibited a smaller biomass
response to P addition than C3 plants (Fig. 3a). This could be due to the
evolutionary adaptation of C4 species—many of which originated in
tropical and subtropical regions—to thrive in P-poor soils, making
them less responsive to ambient P enrichment16,36. Additionally, C4

plants often concentrate inorganic P in specialized cells dedicated to
carbon fixation, potentially reducing their overall P requirements
relative toC3 plants

36,37. These distinct biomass responses to P addition
among plant functional groups deepen our understanding of plant
nutrient dynamics and are critical for improving predictive models of
plant biomass accumulation and global carbon budgets in the context
of increasing P deposition.

Despite these general trends, there was considerable variation in
the responsiveness of plants to P addition across the globe. To
understand the drivers of this variation, we explored how responses
to P addition correlated with multiple leaf functional traits (Fig. 4).
We discovered a positive association between the first principal
component of leaf traits, which characterizes a single ‘conservative-
acquisitive’ axis capturing most variation in the leaf economics
spectrum20,22, and the P addition-induced plant biomass response
(Fig. 4). Traits associated with the acquisitive end of this axis,
including high SLA, elevated leaf nitrogen concentration ([N]), high
photosynthetic rates, and short leaf lifespan, typically indicate faster
carbon assimilation and lower leaf construction costs. These traits
are particularly advantageous for rapid plant growth, especially in
seasonal climates with limited growing periods38. Consequently, P
addition may benefit acquisitive plants by facilitating their rapid
growth potential.

Within the first principal component, SLA, leaf [N] and leaf C:N
ratio emerged as the key functional traits, influencing the plant bio-
mass responses. Specifically, stronger responses were observed in
plants with higher SLA and leaf [N] and lower leaf C:N ratio (Fig. 5). SLA
has been suggested as a reliable indicator for tracking variation in
species’ responses to environmental changes39. Plants with higher SLA
typically exhibit faster photosynthetic rates, nutrient use efficiency,
and growth rates, making them more responsive to P supply20,40. In
addition, high leaf [N] and low leaf C:N ratios indicate more efficient N
uptake and a lower likelihood of N limitation in plants41, further
amplifying the biomass response to P addition due to the functional
coupling between these N and P42. We also found that the correlations
between plant biomass response and key leaf functional traits were
consistent across tropical, non-tropical, and global scale (Supple-
mentary Fig. 11), suggesting the universal influence of leaf economic
strategies on P-induced stimulation of terrestrial plant productivity.
Furthermore, the importance of leaf economic strategies in driving the
variation in plant biomass response to P addition has been con-
solidatedby consideringotherpotential influencing factors (Fig. 6, and
Supplementary Figs. 6,7). Moreover, climate variables and soil prop-
erties exerted indirect effects on biomass responses through the first
principal component of leaf traits (Fig. 6), likely reflecting interactions
between climate and soil fertility in shaping global variation in leaf
economic traits43. Overall, these findings highlight the critical role of
leaf functional traits in advancing our understanding of the mechan-
isms driving global variation in plant responses to P addition.

In addition to leaf functional traits, abiotic factors, such as cli-
matic variables, soil properties and fertilization regimes, also influ-
enced plant biomass responses to P addition (Supplementary
Figs. 4,5). The influence of these abiotic factors primarily stems from
their role in shaping the distribution and availability of P. Specially,
biomass responses to P addition increased with risingMAT and MAP,
likely due to the heightened P demand for plant growth and the
reduced P availability caused by soil weathering, P leaching, and
depletion of soil minerals in habitats like the humid tropical, sub-
tropical, and dryland ecosystem8,44. Consistent with this, we
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observed stronger biomass responses to P addition in tropical
regions—where P limitation is widespread—and in other areas iden-
tified as P-limited based on high leaf N:P ratios ( > 20)42 (Supple-
mentary Figs. 12,13). The negative correlation between the plant
biomass response to P addition and soil total P concentration further
supports this contention (Supplementary Fig. 5). Additionally, plant
biomass responses were positively correlated with fertilization
duration and P addition rates (Supplementary Fig. 4). This may be
attributed to the cumulative increase in soil P availability from pro-
longed fertilization and higher P inputs, which can enhance plant
growth and biomass accumulation45. In turn, increased biomass
production from sustained P enrichment may contribute to soil
organic matter buildup46. This accumulation can improve soil water-

holding capacity, cation-exchange capacity, and N retention47, fur-
ther promoting plant growth and biomass accumulation. Such
positive feedback may amplify the effect of P addition, leading to
continuous increases in plant biomass over time48.

Our results regarding the effect of P addition on the biomass
among different organs suggest that P addition shifts the functional
equilibrium, favoring greater investment in aboveground organs. Spe-
cifically, P-fertilizedplants showedhighermass fractions of leaves, stems
and shoots, alongside lower root mass fractions and root-shoot ratios
compared to non-fertilized plants (Fig. 7b). Given the essential role of P
in photosynthesis49 and the ubiquitous P limitation in global terrestrial
plants7, P addition may enhance the carbon uptake capacity of photo-
synthetic organs, leading to increased leaf biomass49,50. This supports
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the optimal partition theory, which posits that biomass allocation
should maximize the acquisition of the most limiting growth resource51.
In otherwords, plantswill allocatemore biomass belowgroundwhen the
limiting resources are nutrients or water, and more biomass above-
ground when the limiting factor is light30,52. Overall, our findings suggest
that increased allocation of biomass to aboveground organs under P
addition may enhance the ability of plants to capture aboveground
resources53. Such biomass allocation patterns indicate that P addition
might alter biomass accumulation strategies in global terrestrial plants,
thereby influencing ecosystem carbon stocks in the future. Nonetheless,
our results showed that the variation in P addition-induced response of
plant biomass allocation was relatively stable across plant functional
groups, and not strongly influenced by either leaf functional traits or
abiotic factors (Supplementary Figs. 8–10). This finding suggests that
plant biomass allocation compared with plant biomass was relatively
conservative in response to P addition which is partly supported by a
previous report of terrestrial plants in response to N addition31. We
speculated that this finding arises from conserved P allocation strategies
across functional groups, rooted in plants intrinsic operation as
balanced systems under structural and functional constraints54. Even P
allocation among organs in Artemisia species appears comparatively
insensitive to local environmental conditions55. Thus, in response to P
addition, P allocation among organs of plants across functional groups
may remain conservative, thereby maintaining the conservatism of
biomass allocation across functional groups. Furthermore, leaf eco-
nomic strategies may be poor proxies for whole-plant adaptation stra-
tegies reflected by biomass allocation56.

With these findings, our work has important implications for
estimating carbon stocks and predicting future vegetation dynamics
under enhanced anthropogenic P deposition. While most previous
meta-analyses have focused on the effect of environmental factors and
experimental settings on plant biomass responses to P addition7,8,57,
our study highlights the functional type-specific and trait-mediated
responses of terrestrial plants to P addition. In particular, our findings
emphasize the contrasting adaptive strategies of plants, which are
governed by the leaf economics spectrum, representing a continuum
from acquisitive to conservative trait syndromes20,22. Understanding
these adaptative growth strategies is key for predicting changes in
plant community structure, vegetation dynamics, and ecosystem
functioning under future scenarios of enhanced P deposition. Fur-
thermore, our findings provide empirical evidence that can inform the
development of terrestrial biosphere and carbon budget models
incorporating P-cycling processes58. The variation across plant func-
tional groups, trait-based effects, and contrasting biomass-allocation
strategies are key mechanisms for the acclimation of terrestrial plants
to P addition, and their implementation into terrestrial biosphere
models59, may enhance predictions of future biogeochemical cycles
and carbon dynamics60. Overall, our global-scalefindings contribute to
a better understanding of the capacity of terrestrial plants to increase
productivity in response to rising P deposition, which is critical for
forecasting the future global land carbon sink.

Methods
Data collection
We systematically searched for peer-reviewed publications related to
the effect of P addition on plant biomass and its allocation using the
Web of Science and China National Knowledge Infrastructure until 9
October 2023. The searching terms and their combinations are listed
in Supplementary Table 1. Additionally, we screened five previous
meta-analyses7,8,57,61,62 to complete our literature database.

To minimize selection bias and increase data comparability, we
selected publications that met the following criteria: (i) P addition
experiments were conducted in controlled environments (e.g.,
greenhouse, growth chamber) orfield environments, andmust include

at least one of the following variables: biomass of the whole plant,
leaves, stems, roots, shoots or reproductive organs; (ii) both the con-
trol and P addition treatments groups were under the same experi-
mental settings, and only the control and P addition treatments were
selected in case P addition treatment was additionally combined with
other treatments (e.g., factorial experiments); (iii) treatment with P
fertilizers containing N, such as diammonium phosphate, were exclu-
ded; (iv) the biomass response of single species was reported in both
control and P addition treatments, but crops and transgenic plants
were excluded; and (v) the mean and sample size for both control and
P addition treatments could be directly extracted or calculated for
each study. The selection process is illustrated in a PRISMA flow dia-
gram (Supplementary Fig. 1).

For each selected publication, the means and sample sizes were
extracted from tables or text. When results were reported in figures,
data were extracted using WebPlotDigitizer (version 4.6, https://
automeris.io/wpd/). After extraction and compilation, 3,514 observa-
tions and 423 species from 317 publications (86 controlled and 234
field environments) were included in our database. Based on this
database, we also calculated the fraction of total plant biomass allo-
cating to different organs, and a total of 5548 observations were finally
included in this meta-analysis. Environmental variables, such as MAT,
MAP, location coordinate (latitude and longitude), fertilization
regimes (duration, P addition rates, and P addition forms) and
experimental settings (controlled or field) were also extracted from
the publications. IfMAP andMATdatawere not directly reported, they
were derived from the WorldClim database (http://www.worldclim.
org/) based on the experiment’s geolocation. Additionally, back-
ground soil properties for the experiments (concentrations of soil total
P (g kg-1) and available P (mg kg-1), soil total N (g kg-1) and soil pH) were
extracted from the publications. The available P concentrations was
not extracted due to the lack of a unified measurement method in the
publications. For field experiments lacking records of soil properties in
the original publications, these data were extracted from the GSDE
(Global Soil Dataset for Earth System Model) datasets.

For each species, the scientific names were first verified using The
Plant List (http://www.theplantlist.org). Plant functional groups were
then identified according to previous publications63,64, as well as online
databases, including the TRY plant trait database (http://www.try-db.
org)31, the Flora of China (http://frps.eflora.cn/), and Wikipedia
(https://en.wikipedia.org/wiki). Each species was categorized into dif-
ferent growth forms (tree, shrub, forb and graminoid), mycorrhizal
types (arbuscular mycorrhizal (AM) or ectomycorrhizal (EcM)), pho-
tosynthetic pathways (C3 or C4), and plant N2 fixing taxa (N2-fixing or
non-N2-fixing species). Woody species were further classified into
evergreen or deciduous and coniferous or broadleaved species, while
non-woody species were categorized into annual or perennial plants.
Additionally, leaf functional traits, including leaf area (LA, mm2), leaf
carbon concentration ([C],mgg-1), leaf [N] (mgg-1), leaf [P] (mgg-1), SLA
(mm2 mg-1), leaf C:N ratio, leaf N:P ratio, leaf photosynthetic rate (Pn,
μmol g-2 s-1), and leaf lifespan (LL) for each species were collected from
the control data in the publications. If trait data were not reported,
theywerederived fromtheTRYplant trait database19. The leafN:P ratio
wasmainly used to classify the nutrient limitation types of the studied
plants based on leaf N:P thresholds of 10 and 2042. And the average
effect of P addition on plant biomass was 26% (95% confidence interval
(CI): 19.8-35.9%) under N limitation (leaf N:P < 10) and 38% (25.4-51.2%)
under P limitation (leaf N:P > 20, Supplementary Fig. 13), suggesting
that plants under P limitation showed a significantly greater response
of the biomass to P addition than those under N limitation.

Data analysis
We used the logarithmic response ratio (lnRR) as measure of effect size
to quantify the effect of P addition on plant biomass and its allocation61.
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The lnRR and weight (Wr) for each observation were calculated as:

ln RR= lnðXt=XcÞ= lnXt � lnXc ð1Þ

Wr = ðNc ×NtÞ=ðNc +NtÞ ð2Þ

whereXc andXt are themeans of the observed values for control and P
addition treatments, respectively. Wr is the weight for each observa-
tion, and Nc and Nt are the sample sizes in the control and P addition
treatments, respectively. Sample sizes were used to calculate the
weight because sampling variances were missing in 124 of the 317
publications. This method for determining weight has been widely
used in previous meta-analyses61,65. To evaluate the robustness of our
results, we subsequently conducted statistical tests for publication
bias using Egger’s test66. Results indicated that there was no significant
publication bias for each variable (Supplementary Table 2).

To characterize the phylogenetic structure of lnRR, we first gen-
erated phylogenetic trees of the 423 species with the ‘V.PhyloMaker’
package based on a mega-tree of vascular plants67 and then estimated
phylogenetic signal using Pagel’s λ in the ‘Geiger’package68. Pagel’s λ is
a scaling parameter between 0 and 1, where λ = 1 indicates a perfect
phylogenetic signal, while λ = 0 indicates no phylogenetic signal,
aligning with trait evolution under Brownian motion69. And p <0.05
indicates a significant phylogenetic signal. Pagel’s λwas selected for its
ability to distinguish complex trait evolutionmodels, reliably measure
effect size, and its suitability for large phylogenies with over
50 species70. Second, we compared the variability in lnRR across five
phylogenetic groups, namely pteridophytes, gymnosperms, magno-
liids, monocots, and eudicots ordered by evolutionary age fromoldest
to youngest41.

To estimate the average P-addition effect across or within differ-
ent functional groups and organ types, we then constructed linear
mixed-effects models with ‘study’ and ‘Wr’ as the random factor and
weight respectively, fitting with restricted maximum likelihood using
the ‘lmer’ function in the ‘lme4’ package61.

ln RR=β0+πstudy+ ε ð3Þ

where βo represents the intercepts, πstudy denotes the random effects
to account for autocorrelation among observations within each study
and ɛ represents the sampling error. We checked the normality of the
model residuals using the ‘check_normality’ function in the ‘perfor-
mance’ package. When the normality assumption was violated, a new
95% confidence interval (CI) was generated by using a bootstrapping
method with 999 iterations in the ‘boot’ package. For a better inter-
pretation, we converted the lnRR and its associated 95% CI to per-
centage change as follows:

Percentage change ð%Þ= ðeln RR � 1Þ× 100% ð4Þ

To quantify the influence of leaf functional traits on P-addition
effect on plant biomass and its allocation, we first performed a prin-
cipal component analysis (PCA) to illustrate the multivariate associa-
tions of leaf functional traits20. The first principal component (PC1),
representing the acquisitive versus conservative axis of the leaf eco-
nomics spectrum, explained 40.1% of the total variation of these traits
(Fig. 4). Then, the PC1 was used to examine how plant biomass
responses to P addition correlate with leaf economic strategies. To
analyze this correlation, we used linearmixed-effects models to assess
the link between lnRR and PC1.

Furthermore, we identified the key leaf functional traits that
contributed to PC1 and explored the correlations between lnRR and
each of those key traits using the linear mixed-effects model. Mean-
while, to clarify the effects of other potential influencing factors on

lnRR, we also explored the correlations of lnRR with climate variables,
soil properties, and fertilization regimes. The correlations between
lnRR and P addition forms exhibited insignificant differences across
and within experimental settings, and thus P addition forms was
excluded from subsequent analysis. Whether moderator variables
were log-transformed was based on the corrected Akaike information
criterion (AICc) derived from both linear and logarithmic mixed-
effects models. Here, moderator variables were treated as fixed fac-
tors, and ‘study’ was included as random factor. The marginal and
conditional R2 were computed using the ‘r.squaredGLMM’ function in
the ‘MuMIn’ package71. Finally, the model results were visually illu-
strated using the ‘visreg’ function within the ‘visreg’ package.

In addition, we quantified the relative importance of leaf func-
tional traits and abiotic factors (climate variables, soil properties, and
fertilization regimes) on lnRR variabilities through the boosted
regression tree (BRT) analyses. The moderator variables used in this
analysis were pre-screened based on variance inflation factors (VIF < 5)
to avoid multicollinearity. All moderator variables were scaled before
modeling. Here, leaf functional traits were considered through two
ways in the BRT analyses, with one way using the PC1 of leaf functional
traits and another using the key functional traits associated with PC1.
The BRT analyses were conducted using the ‘gbm’ package7. Specific
parameter settings were based on a previous study7, including a
Gaussian error distribution, tree complexity of 2, a learning rate of
0.005, 10 fold cross-validation and a bag fraction of 0.75. Model per-
formance was evaluated using cross-validation correlation (CV). The
relative importance of each predictor derived from the BRT was
represented as the percentage of the total variation explained by the
models. Finally, partial dependence plots of BRT analysis were gener-
ated to visually illustrate the effects of each predictor.

To evaluate the direct and indirect effects of leaf functional traits
(indicated by PC1), climate variables, soil properties, and fertilization
regimes on lnRR, we conducted a structural equation modeling (SEM)
analysis using ‘piecewiseSEM’ and ‘lme4’ packages72. The SEM analysis
enables the analysis of complex causal networks and the testing of
hypotheses regarding cause-effect relationships based on a priori
information. In our study, a key underlying assumption in the a priori
SEMmodel is that abiotic factors can indirectly influence the variation
in lnRR through their effects on leaf functional traits. All themoderator
variables included in this model were first divided into ‘composite
variables’ and then included in the SEM. The factors of climate, soil,
and fertilization regimes in the SEMwere the same as those used in the
BRT analyses. A good fit of the SEM was evaluated using Fisher’s C
value, which was non-significant (p >0.05). All statistical analyses were
conducted using R software version 4.3.373.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study, including raw data and source data
underlying the figures and tables, have been deposited in Figshare at
https://doi.org/10.6084/m9.figshare.29154539. Mean annual tempera-
ture and mean annual precipitation at each site were extracted from
the WorldClim database (http://www.worldclim.org/). Soil character-
istics including soil pH, soil total P and soil total N concentrations were
extracted from GSDE (Global Soil Dataset for Earth System Model)
datasets. Leaf functional traits were extracted from the TRY plant trait
database (http://www.try-db.org). Source data are provided with
this paper.

Code availability
The code generated in this study have been deposited in Figshare at
https://doi.org/10.6084/m9.figshare.29154539.
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