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Abstract Comprehensive land models are subject to significant parametric uncertainty, which can be hard
to quantify due to the large number of parameters and high model computational costs. We constructed a large
parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry
configuration (CLM5.1‐BGC). We performed more than 2,000 simulations perturbing 211 parameters across
six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential
parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that
parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of
variance across our ensemble. The most important parameters can differ regionally and also based on the forcing
scenario. The software infrastructure developed for this experiment has greatly reduced the human and
computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and
uncertainty, as well as automated calibration.

Plain Language Summary The Community Land Model includes a large set of numerical settings
that help describe attributes of the various components of the land system. Each setting has a default value, but
we know that other values may also be reasonable within a certain range. We ran a large set of simulations,
increasing and decreasing each setting independently to better understand its influence on model outputs, such
as plant productivity and the water cycle. We repeated these experiments across a range of scenarios, including
present‐day conditions and introducing (or removing) various aspects of climate change. We found that
changing certain model settings could influence our results as much as the influence of climate change, itself.
We also found that the most influential settings varied by geographic region. Understanding the influence of all
of these settings can help us improve our model and also help us gauge our confidence in model predictions.

1. Introduction
Water availability, land temperature extremes, fire risk, and crop productivity will all see impacts from climate
change, and are among the many processes represented within the terrestrial components of Earth SystemModels.
Understanding how these processes respond to rising CO2 and even influence CO2 concentration trajectories is a
critical facet of climate change research. Land processes substantially influence climate directly through, for
example, evapotranspiration (ET) (Zarakas et al., 2024), and indirectly through carbon‐climate feedbacks (Cox
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et al., 2000). Uncertainty in climate model projections varies by domain and generally increases with extended
time horizons (Koven et al., 2022). Making centennial‐scale projections of the cumulative terrestrial carbon sink
has been especially challenging, with high uncertainty persisting across model generations (Arora et al., 2020;
Friedlingstein et al., 2006, 2014), and limited efficacy of emergent constraints (L. Liu et al., 2024). Emissions
trajectories and land management scenarios contribute some uncertainty, but the majority of this uncertainty is
inherent to the challenge of predicting vegetation dynamics in a novel climate (Lovenduski & Bonan, 2017). Still,
our expectation is that some of this uncertainty is indeed reducible, if we can more effectively utilize the ongoing
expansion of observational data sources from remote sensing, meteorological stations, flux towers, and field
campaigns (Baldocchi et al., 2024; Worden et al., 2021). The capability to efficiently ingest these data and
improve simulation performance with improved parameters is especially valuable for actionable science (Cheng
et al., 2023). However, given increasingly comprehensive land modeling systems, and the wide array of obser-
vational products, several technical hurdles exist that hinder effective model development and calibration.

Model inter‐comparison projects (MIPs) are a major component of the model development cycle, and have been
the primary means by which model projection uncertainty is assessed (Eyring et al., 2016; Friedlingstein
et al., 2022; Henderson‐Sellers et al., 1995; Pitman et al., 1999; Schlosser et al., 2000; Wood et al., 1998). While
MIPs have had tremendous utility in capturing and assessing wide ranges of model assumptions, it can none-
theless be difficult to interpret the differences between models, or even between subsequent versions of the same
model, due to the multiplicity of structural and parametric variations (McNeall et al., 2016). In most MIPs, each
model is typically allowed only a single parameterization (despite the existence of many plausible parameter sets)
due to the high cost of each simulation, for example, the TRENDY land model intercomparison (Sitch et al., 2024)
or the Coupled Model Intercomparison Project (Eyring et al., 2016). Thus, MIPs typically conflate parametric and
structural uncertainty, and de‐emphasize the consequences of uncertain model calibration in estimates of future
land state trajectories.

Understanding the range of outcomes arising from the many plausible parameter combinations is a critical step in
robust uncertainty quantification. Parameter sensitivity tests can be used to gauge parametric uncertainty, and a
collection of systematic parameter sensitivity tests across multiple parameters is often termed a Perturbed
Parameter Ensemble (PPE, also referred to as Perturbed Physics Ensemble), with examples in the coupled
(Murphy et al., 2004) and land‐only contexts (Baker et al., 2022; Dagon et al., 2020; McNeall et al., 2024). One
important application of PPEs has been assessing uncertainty in climate model projections (Booth et al., 2012;
Hawkins et al., 2019; Murphy et al., 2004; Peatier et al., 2022; Sanderson et al., 2008; Tett et al., 2022; Yamazaki
et al., 2021). Beyond uncertainty quantification, PPEs also form a basis for automated model calibration through
various approaches like history matching, which does not require assumptions regarding parameter distributions
(D. Williamson et al., 2013; D. B. Williamson et al., 2017; Hourdin et al., 2020; Couvreux et al., 2021; McNeall
et al., 2024), or Bayesian methods (Cleary et al., 2021; Fer et al., 2018; Ziehn et al., 2012), or using genetic
algorithms (Bastrikov et al., 2018). Several promising avenues for model calibration are in development (Alonso‐
González et al., 2022; Cleary et al., 2021; Pinnington et al., 2020), many of which require the construction of large
PPEs (Qian et al., 2018). In a more general sense, PPEs yield a robust knowledge basis for understanding and
working with a given climate model. This can aid in introducing new users to the model, or to help steer and
facilitate model development.

The process of parameter estimation for the complex land models typically embedded within Earth System
Models is challenging on account of the intrinsic complexity of the heterogeneous land surface, the diversity and
plasticity of plant and microbial life, and the multiplicity of domains that comprise the terrestrial biosphere (e.g..,
hydrology, snow, biogeochemistry, physiology, land management, etc.). The number of model parameters
required to represent all the relevant processes is large and model simulations are relatively expensive, presenting
a major barrier to robust calibration, model interpretation, and development (Dagon et al., 2020; Fisher &
Koven, 2020). Thorough assessment of the parametric sensitivity of land models in a manner that is repeatable,
open, and integrated with ongoing code development is desirable but challenging (Balaji et al., 2022; Hourdin
et al., 2017). It typically requires extensive computational time, software engineering, and domain‐specific expert
scientific knowledge. Our work here tries to alleviate each of these challenges in turn, at least within the context of
one land model. While we are not yet at the point of automated calibration, we present herein several innovations
that will serve to make an automated calibration system more technically feasible.
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In this project we create a large PPE with the Community Land Model 5.1 with biogeochemistry configuration
(CLM5.1‐BGC, hereafter CLM) (Lawrence et al., 2019). We extend the work of Dagon et al. (2020) which
utilized a PPE to calibrate a subset of CLM parameters. Here we include a broader suite of parameters and
continue to enhance the software tools for parameter perturbation and optimization. The goal of this project is to
systematize the parameter perturbation process within the CLM modeling framework, and develop the necessary
tools and data sets to efficiently test parameter effects across a wide range of land model processes. In doing so,
we have generated a large PPE, comprising thousands of parameter sensitivity tests. In this paper we present that
data set, describe how it was produced, and survey some potential applications. The data set has already
demonstrated utility for diagnosing parameter effects (Cheng et al., 2023; Yan et al., 2023a, 2023b; Zarakas
et al., 2024), while the software and modeling infrastructure has greatly expanded our capability to generate
insights about parameter effects and sensitivities within CLM.

2. Experiment Description
2.1. Model Description

This experiment utilizes the Community Land Model configuration (version 5.1, i.e. CLM5.1) of the Community
Terrestrial Systems Model. The model source code and documentation are available online (https://github.com/
ESCOMP/CTSM), as is a full model description (Lawrence et al., 2019).

Relative to CLM5.0, version 5.1 includes minor bug fixes, parameter adjustments (Birch et al., 2021), and the
implementation of biomass heat storage (Swenson et al., 2019). The PPE experiment required additional code
modifications to enable systematic variation of the full suite of model parameters (many of which were previously
“hard‐coded”, i.e., written directly as numerical values in the model source code). These modifications were
incorporated into the main branch of the CLM codebase for future use (see Open Research Section). We utilized
the biogeochemistry version of CLM, which includes active carbon and nitrogen cycles. This is as opposed to the
satellite phenology mode, which is driven by observed canopy properties and thus has fewer internal feedbacks,
and was explored in Dagon et al. (2020). We used the model in land‐only mode driven by a data atmosphere (see
Section 2.5 for details), with the crop model turned off.

2.2. Model Spin‐Up

Model spin‐up for the equilibration of carbon and nitrogen pools within biogeochemistry‐enabled land models
can consume up to 98% of computational time needed for a simulation (Sun et al., 2023). Depending on the
evaluation criteria and model configuration, CLM5 requires between 800 and 2,000 years (or more) to reach
steady‐state conditions (Lawrence et al., 2019). In the absence of equilibrium, the drift toward steady state can
obscure important model dynamics or features (Séférian et al., 2016). Because each member of the PPE can have a
unique steady state, we performed an independent spin‐up for each ensemble member.

To manage computational cost we leveraged the Semi‐Analytic spin‐up mode (SASU) recently implemented
within CLM5 (Liao et al., 2023; Lu et al., 2020). This new module utilizes a matrix representation on CLM's
biogeochemistry to reduce spin‐up time by one order of magnitude (Liao et al., 2023; Luo et al., 2022), and had
been previously leveraged for a PPE with the Organizing Carbon and Hydrology in Dynamic Ecosystems model
(Huang et al., 2018). Our spin‐up protocol featured 20 years in Accelerated Decomposition spin‐up mode (see
Lawrence et al. (2019) and Thornton and Rosenbloom (2005) for details), followed by 80 years of SASU, fol-
lowed by 40 years of Native Dynamic spin‐up mode (details on forcing data in Section 2.5). This protocol was
designed to achieve sufficiently equilibrated carbon and nitrogen states, while minimizing computational time.
This spin‐up methodology did not always reach full equilibrium of soil carbon (Figure S1 in Supporting Infor-
mation S1). However we believe that this spinup methodology is sufficient to robustly infer parameter rankings
for carbon cycle processes, if not the exact absolute values of parameter effects.

2.3. Sparse Grid

Another control on model cost is spatial resolution. Most global CLM simulations utilize nominal 1° resolution,
which equates to about 20,000 land grid cells. To reduce computational costs parameter perturbation experiments
often use lower resolution, such as 4° × 5° (Dagon et al., 2020). As opposed to selecting a coarse grid resolution,
here we apply an alternative sparse grid approach by using a clustering algorithm to achieve an alternative low
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resolution configuration. The goal is to more strategically distribute grid cells, opting for more grid cells in areas
that are especially distinct or variable, and fewer in areas that can be easily approximated based on output
elsewhere (e.g., neighboring grid cells). Multivariate spatio‐temporal clustering (MVSC) has been utilized to
extract patterns of climatological significance from climate model output (Hoffman et al., 2005) and applied to
design a representativeness‐based sampling network (Hoffman et al., 2013). Instead of lowering resolution by
coarsening a rectilinear grid, we used MVSC to strategically remove effectively redundant grid cells. We used k‐
means clustering to identify groups of grid cells with similar dynamics based on a 2° transient simulation (1850–
2014) using the CLM‐PPE codebase. We selected one representative grid cell from each cluster to stand in for the
entire cluster. The representative grid cell is whichever is located nearest the cluster centroid in climate space. The
set of representative grid cells comprise a “sparse grid”, which are used in lieu of a “coarse” grid. To recompose
mapped output and compute global means, the output from the representative grid cell is substituted for all
members of the cluster cohort. This naive interpolation will introduce errors that grow in relative magnitude as the
domain of interest shrinks.

Clustering was based on a subset of 18 CLM variables (Table 1). The MVSC algorithm delineates clusters based
on the mean and variability of each variable at each grid cell computed for six 30‐year climatology windows
(1865–1894, 1895–1924, …, 1985–2014). Clusters were delineated to equalize the multi‐dimensional variance
across the user‐specified number of groups, k. We tested 15 values of k, ranging from 10 to 800. Utilizing the
ILAMB2.5 benchmarking software (Collier et al., 2018), we calculated skill scores to quantify how well each
candidate sparsegrid mirrored the full grid output (Figure S2 in Supporting Information S1). We opted for a 400‐
cluster sparsegrid, to balance computational cost against model fidelity. Because our emphasis is on vegetated
regions, we masked out Antarctica within the clustering algorithm, whereby we do not provide any output
below 60°S.

2.4. Parameter Identification and Ranges

Identification of the complete parameter set of a land surface model is in itself a non‐trivial exercise, as in practice,
many empirical constants are hard‐coded and not amenable to systematic perturbation (Cuntz et al., 2016;
Mendoza et al., 2015). For the purposes of this activity, we identified a broad set of 211 CLM‐BGC parameters,
and enabled their modification via the model parameter file. Several domains were not perturbed, including crops,
methane emissions, emissions of biogenic volatile organic compounds and dust, urban properties, and river flow
parameters. The crop model was not utilized as our initial focus is on unmanaged land. Of the 211 parameters, 145
are scalar‐valued, with a single parameter value acting globally. The remaining 66 parameters include a plant
functional type (PFT) dimension, with the potential for different parameter values for each unique PFT. For any
given PFT parameter, all PFTs were perturbed in tandem (i.e., all 16 PFTs to their maximum values and then to
their minimum values), but with potentially different ranges for each PFT. Explicit parameter ranges for each
parameter (and each PFT) are provided in a supplemental spreadsheet.

Given the large parameter space (Table 2), to conduct an initial analysis of the response of the model to parametric
uncertainty, we decided to vary each parameter independently, exploring the impact of low and high values. To
define parameter ranges we created an online spreadsheet and solicited domain‐area experts to provide a mini-
mum and maximum value for each parameter. In some cases literature values were directly utilized, but in many

Table 1
Clustering Inputs Categorized Into Three Groups, With the CTSM Variable Name in Parentheses

Climate variables Ecosystem state variables Ecosystem flux variables

2 m air temperature (TSA) Leaf area index (TLAI) Gross primary production (GPP)

Atmospheric rain (RAIN) Ecosystem carbon (TOTECOSYSC) Heterotrophic respiration (HR)

Atmospheric snow (SNOW) Ecosystem nitrogen (TOTECOSYSN) Autotrophic respiration (AR)

2 m specific humidity (Q2M) Soil ice (TOTSOILICE) Net biome production (NBP)

Solar radiation (FSDS) Soil liquid water (TOTSOILLIQ) Total liquid runoff (QRUNOFF)

Snow cover fraction (FSNO) Sensible heat (FSH)

Latent heat (EFLX_LH_TOT)
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cases, expert judgment was used or else a default perturbation of ±20%. The parameter range spreadsheet is
provided within Supporting Information S1.

In some cases parameters could not or should not be perturbed independently, because they feature inherent co‐
dependence. In the case of nitrogen fixation costs, we opted to perturb the parameters independently, but also as a
group (“KCN”), to enforce a change in overall nitrogen limitation in lieu of switching from one uptake pathway to
another. For the grouped simulations, the given set of parameters were perturbed in tandem, either to their

Table 2
In Total, 211 Parameters Were Perturbed in This Experiment

Parameter Description Model domain Varies by PFT?

cv Turbulent transfer coefficient Sensible, latent heat and momentum fluxes

dleaf Leaf characteristic length Sensible, latent heat and momentum fluxes yes

d_max Dry surface layer (DSL) parameter Sensible, latent heat and momentum fluxes

frac_sat_soil_dsl_init Fraction of saturated soil at which DSL initiates Sensible, latent heat and momentum fluxes

fff Decay factor for fractional saturated area Hydrology

liq_canopy_storage_scalar Canopy‐storage‐of‐liquid‐water parameter Hydrology

maximum_leaf_wetted_fraction Maximum leaf wetted fraction Hydrology

sand_pf Perturbation factor for sand content of soil column Hydrology

sucsat_sf Scale factor for minimum soil water potential Hydrology

medlynintercept Medlyn intercept of conductance‐photosynthesis relationship Stomatal resistance and photosynthesis yes

medlynslope Medlyn slope of conductance‐photosynthesis relationship Stomatal resistance and photosynthesis yes

tpu25ratio Ratio of tpu25top to vcmax25top Stomatal resistance and photosynthesis

jmaxb0 Baseline proportion of nitrogen allocated for electron transport Photosynthetic capacity

jmaxb1 Response of electron transport rate to light Photosynthetic capacity

slatop Specific leaf area at top of canopy Photosynthetic capacity yes

theta_cj Empirical curvature parameter for photosynthesis colimitation Photosynthetic capacity yes

wc2wjb0 Baseline ratio of wc:wj Photosynthetic capacity

FUN_fracfixers fraction of carbon available for N fixation Fixation and uptake of Nitrogen yes

KCN Nitrogen acquisition parameter group Fixation and uptake of Nitrogen yes

kmax Plant segment max conductance Plant hydraulics yes

krmax Root segment max conductance Plant hydraulics yes

psi50 Water potential at 50% loss of conductance Plant hydraulics yes

nstem Stem number Biomass heat storage yes

lmr_intercept_atkin Intercept in the calculation of leaf maintenance respiration Plant respiration yes

froot_leaf Allocation parameter: new fine root C per new leaf C Carbon and nitrogen allocation yes

leafcn Leaf C:N Carbon and nitrogen allocation yes

leaf_long Leaf longevity Vegetation phenology and turnover yes

cpha Activation energy for cp Acclimation parameters

jmaxhd Deactivation energy for jmax Acclimation parameters

kcha Activation energy for kc Acclimation parameters

lmrha Activation energy for lmr Acclimation parameters

lmrhd Deactivation energy for lmr Acclimation parameters

tpuha Activation energy for tpu Acclimation parameters

tpuse_sf Scale factor for tpu entropy term Acclimation parameters

vcmaxha Activation energy for vcmax Acclimation parameters

vcmaxhd Deactivation energy for vcmax Acclimation parameters

Note. These are the parameters mentioned within the main text. A complete set of parameters, with ranges, is included in a spreadsheet in Supporting Information S1.
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minimum or maximum values. We likewise opted to perturb soil hydraulics directly in two distinct ways, first by
directly perturbing the hydraulic properties (e.g., saturated hydraulic conductivity) and also in a parallel set of
simulations perturbing the soil texture (percent sand, silt, and clay) and allowing the soil hydraulic properties to
respond through the pedotransfer functions. Future experiments could utilize a multifactor perturbation sampling
strategy to resolve parameter interdependencies and tradeoffs, such as along major axes of ecosystem function
(Migliavacca et al., 2021).

For a small percentage of parameters, the perturbation ranges were severe enough to eradicate a given PFT across
all or part of its geographical range (Figure S3 in Supporting Information S1). In the case that one or more PFTs
did not survive a parameter perturbation, we iteratively re‐ran the simulation with slightly less extreme parameter
values until the PFT survived. A PFTwas classified as surviving in a given gridcell if it achieves an leaf area index
(LAI) of at least 0.1 m2/m2 at any point after the spinup period. A PFT was classified as surviving globally if at
least 50% of the area that was alive with the default parameters is alive in the perturbed simulation. For the
analyses in this paper, we constrained the ranges of several parameters based on survivability in the low CO2, pre‐
industrial climate, and control climate ensembles to improve the chances that all PFTs would be able to survive in
a transient 1850 to present‐day simulation. We did not constrain parameter ranges based on future climate, high
CO2, or increased nitrogen deposition. In total, 16 of the 211 parameters had the parameter range constrained to
some extent. Original and constrained ranges are available in Supporting Information S1 spreadsheet.

In one case, a significant CLM bug was identified after the completion of our primary experiment (https://github.
com/ESCOMP/CTSM/issues/2120). Namely that the values for two nitrogen uptake parameters had been
transposed in Brzostek et al. (2014). Resolving the issue resulted in an approximately 5% decrease in gross
primary production (GPP) of (Figure S4 in Supporting Information S1) in the control simulations, and also
significantly altered the size of the various parameter effects. Any PPE should be seen as intrinsically connected
to its underlying codebase (bugs and all), and, reflecting this, we did not rerun the rest of the PPE. Therefore the
majority of simulations contain the erroneous parameter values, and may slightly overestimate GPP. The inter-
acting effect of this bug fix with all of the other parameter perturbations was not explored. The bug has since been
resolved in later model versions and will be tested in future PPEs.

2.5. Experimental Design

For each of the 211 parameters, we ran 12 simulations, one for each of the minimum and maximum parameter
values, across six different forcing scenarios. Each simulation ran for 150 years, with the first 140 for spin‐up (as
described above in Section 2.2), followed by a 10‐year period for analysis. It is important to note that these are
equilibrium‐style simulations, where the land has been allowed to reach steady state conditions, relative to the
climate forcing. This is achieved by repeating a single 10‐year forcing data set 15 times during the spin‐up
procedure and production phase of our simulations. As such, these simulations are not directly comparable to
transient simulations or satellite observations, where present‐day vegetation has not yet reached equilibrium with
present‐day climate and CO2 concentrations.

We opted for six different forcing scenarios to understand the intersection of parameter effects with different
forcing agents associated with climate change (Table 3). The GSWP3v1 reanalysis product (http://hydro.iis.u‐
tokyo.ac.jp/GSWP3/) served as our atmospheric forcing, as it is the default forcing data for CLM5 (Lawrence
et al., 2019). Our six forcing scenarios were: a 2010‐era control climate, high and low CO2, future and pre‐

Table 3
Forcing Scenarios

Name Meteorology CO2 (ppmv) N addition Description

CTL2010 2005–2014 367 – Control experiment

C285 2005–2014 285 – Low CO2

C867 2005–2014 867 – High CO2

AF1855 1851–1860 367 – Pre‐industrial climate

AF2095 2091–2100 367 – Late century climate (SSP3‐7.0)

NDEP 2005–2014 367 5g N m− 2 y− 1 Enhanced nitrogen deposition

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004715

KENNEDY ET AL. 6 of 17

 19422466, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004715 by C
ornell U

niversity, W
iley O

nline L
ibrary on [13/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/ESCOMP/CTSM/issues/2120
https://github.com/ESCOMP/CTSM/issues/2120
http://hydro.iis.u-tokyo.ac.jp/GSWP3/
http://hydro.iis.u-tokyo.ac.jp/GSWP3/


industrial climate anomaly forcing, and enhanced nitrogen deposition (see Table 3). We applied climate and CO2
anomalies independently, in order to disentangle their effects on parameter rankings. Future and pre‐industrial
climate anomaly forcing data sets were prepared by adding GSWP3v1 anomalies from 2005 to 2014 to a
mean climate change signal. We inferred the mean climate change signal using the CESM2 large ensemble
experiment (Rodgers et al., 2021), computed as the average of the difference between the period of interest (either
1850s or 2090s) and present day for six atmospheric forcing variables (temperature, humidity, precipitation, wind,
longwave and shortwave radiation; see Figure S5 in Supporting Information S1 for climatologies). The future
climate scenario utilizes the end‐of‐century climate from the SSP3‐7.0, a high‐emissions scenario, which was
chosen to align with the existing CESM2 large ensemble (Rodgers et al., 2021). Since completing the experiment
we uncovered a software bug affecting the AF1855 and AF2095 simulations. Namely that climate anomalies were
not applied to certain coastal gridcells (Figure S6 in Supporting Information S1). In all this affected less than 3%
of land area, and did not significantly alter parameter rankings (Figure S7 in Supporting Information S1).

2.6. Biome Definitions

In addition to analyzing parameter effects on various output variables globally, we were also interested in un-
derstanding parameter effects on different biomes. As such, we categorized each of the 400 sparse grid cells
according to their Whittaker biome (Whittaker, 1970), which delineates biomes based on average temperature and
precipitation. Biomes were delineated based on the atmospheric forcing temperature and precipitation data
averaged across 2005 to 2014 (Figure S8 in Supporting Information S1). Overall there are nine vegetated biomes
and an additional ice sheet biome, where no vegetation is present (Figures S9 and 10 in Supporting Informa-
tion S1). These biomes are somewhat arbitrary, and the biomes would vary slightly based on the climatology
period, but they provide some coarse delineation that we feel has meaningful ecological significance and have
found useful for analyzing this ensemble.

3. Results
3.1. Computational Cost

Given the very large size of the CLM5‐BGC parameter space (Figure 1), and the relatively expensive compu-
tational cost of standard model configurations, a major goal of this project was to develop a fast configuration of
CLM5‐BGC that would allow for a large number of simulations. Combining the SASU spinup approach with the
sparse grid formulation (see Section 2.3 for details) yielded a configuration approximately 500 times less costly
than the 1‐degree configuration most often used for CLM simulations (Figure 2). There are 22,648, 5,666, and
1,764 land grid cells in standard 1°, 2°, and 4° × 5° CLM5.1 simulations, respectively, as compared to just 400
grid cells in the sparsegrid. Likewise, whereas previous spin‐up methodologies required 1,500 years or longer to
satisfy equilibrium criteria, the SASU approach enabled by matrix representation yielded satisfactory spin‐up
efficiency for this experiment within 140 years (Figure S1 in Supporting Information S1).

Figure 1. 211 parameters were perturbed across the various domains of the land model.
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Choosing the number of clusters to generate the sparsegrid involved balancing the computational savings against
representational fidelity. Given more clusters, the sparsegrid will generally provide a better approximation of
output from the full grid. As one example, accurate reconstruction of global photosynthesis could be achieved
with a relatively small number of clusters, with R2 > 0.95 achieved with only 200 clusters (Figure 3). Performance

Figure 2. The approximate number of simulations afforded by 1 million core‐hours on the Cheyenne supercomputer for a
range of CLM configurations. Configurations are labeled according to spin‐up procedure (Semi‐Analytic spin‐up mode or
the standard 1,500‐year spinup) and horizontal resolution (“sg” signifies sparsegrid). The inset map shows the locations of
the 400 sparse grid cells. See Section 2 for spin‐up and sparsegrid details.

Figure 3. Sparsegrid versus fullgrid (2° resolution) global annual gross primary production across the last 40 years of a
transient CLM5.1 simulation with different cluster number settings (a–d). We opted for 400 clusters to balance
computational cost against representativeness.

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004715

KENNEDY ET AL. 8 of 17

 19422466, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004715 by C
ornell U

niversity, W
iley O

nline L
ibrary on [13/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



continues to improve with added clusters, but with marginal returns (Figure S2 in Supporting Information S1). We
had hoped to see a clear point of diminishing returns across a wide range of variables as we increase the number of
clusters. Instead, for most variables, we observe a quick reduction of bias approaching 200 clusters, but after this
point, improvement slows but does not saturate (Figure S2 in Supporting Information S1). We chose 400 clusters,
because it provides satisfactory performance across a range of important metrics, while affording a sufficient
number of simulations to perform the full experiment within our computational budget. The main goal of the
sparsegrid is to obtain a coarse understanding of parameter effects at low computational cost, which could later be
improved by full grid simulations or alternative sparsegrids with more clusters.

This model configuration allowed for over 2,500 simulations across our six forcing scenarios. Overall, we found
substantial impacts of parametric sensitivity on model behavior, in some cases exceeding the magnitude of
scenario effects (Figure 4). In the control scenario, the global sum of GPP ranged from 103 to 158 PgC per year
across all ensemble members, and net ecosystem production (NEP) ranged from 1.7 to 3.8 PgC per year. NEP was
especially variable in the high CO2 scenario, varying from 1.6 to 5.7 PgC per year. One perturbation, reducing the
heat capacity of sand by 20%, proved destructive in the future climate scenario, resulting in inhospitably hot soil
conditions and widespread plant death. A perturbation of ±20% may exceed the reasonable range for this
parameter, but this simulation was instructive for exposing the model's response to hot soils. Carrying out an
extensive PPE increases the possibility of exposing unexpected model behavior, including unforeseen tipping
points, brittle parameterizations, and/or bugs.

Figure 4. Global annual mean values for the default simulations (circles) and ensemble ranges (bars) for (a) gross primary
production, (b) net ecosystem production, (c) leaf area index (LAI), and (d) evapotranspiration across six forcing scenarios.
(e) Global LAI across the full set of parameter perturbation simulations under the future climate scenario. Most simulations
fall within 5% of the default LAI, with a small number of parameters generating larger effects. One perturbation, reducing
sand heat capacity by 20% caused a very low LAI.

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004715

KENNEDY ET AL. 9 of 17

 19422466, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004715 by C
ornell U

niversity, W
iley O

nline L
ibrary on [13/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.2. Main Results

A small fraction of parameters tends to explain a large amount of the ensemble variance for any given variable or
metric (Figure 5). GPP, which is a complicated process, requires 20 parameters to explain 90% of the control
ensemble variance. Conversely, canopy evaporation is governed by fewer parameters. Just four parameters
(maximum leaf wetted fraction, liquid canopy storage, the turbulent transfer coefficient, and leaf characteristic
length) explain upwards of 90% of the canopy evaporation variance across all the forcing scenarios (Figure S11 in
Supporting Information S1). In general, most of the parameter perturbations had a relatively small impact on any
given output variable. Though this experiment encompasses 211 parameters, no single variable responds to all
211 parameters. In fact, the effective parameter space dimensionality for any given output variable tends to be
much smaller than 211. While the principle of land models is that these are all interlinked via complex feedback
processes, many parameters nonetheless have impacts that are mostly limited to their own domain.

3.3. Comparing Scenarios and Biomes

We opted to rank parameters by absolute parameter effect, given that perturbations while unequal in relative size,
were defined with the same uncertainty range in mind. We repeated the full set of parameter perturbations across
the six forcing scenarios in Table 3 (Figure 4). This ensures that we can identify parameters that are important not
just under present‐day conditions, but also parameters that control the response to forcing changes (CO2, nitrogen
deposition and climate). For example, the parameters that control present‐day NEP differ from the parameters that
control NEP in the high CO2 scenario (Figures 6a and 6b). NEP increases by approximately 50% with the increase
of CO2 from 367 to 867 ppm when using the CLM5.1 default parameters, but can actually decrease with certain
parameter settings (Figure 6c). One key parameter is tpuse_sf, which is a scalar perturbation factor influencing the
triose phosphate limitations on photosynthesis. Triose phosphate limitation is difficult to quantify and has not
been observed to significantly hinder photosynthesis under present‐day CO2 concentrations, but may play a larger
role in the future (Kumarathunge et al., 2019; Lombardozzi et al., 2018). This parameter is not particularly
influential on NEP at 367 ppm (ranked 39, not shown), but is third most influential when we increased CO2 to
867 ppm.

The future climate experiment is 4.3 K warmer averaged over our study domain (land‐only, Antarctica excluded,
Figure S5 in Supporting Information S1). This contributed to an increase in ET of 8.8% relative to the control
simulation when using the default CLM5.1 parameters (Figure 6f). While the parameters that most strongly affect
global average ET in both the control and future climates are generally the same (Figures 6d and 6e), a distinct set
of parameters govern the change in ET due to warming (Figure 6f). While the control simulation is primarily
influenced by hydrology and stomatal conductance parameters, the response of ET to warming is largely
controlled by photosynthesis acclimation parameters (i.e., tpuse_sf, kcha, vcmaxha, vcmaxhd, lmrhd, and cpha).

Figure 5. Cumulative fraction of variance explained by the most influential parameters on gross primary production (GPP)
and canopy evaporation. Approximately 96% of canopy evaporation variance can be explained by the 10 most influential
parameters, whereas 30 parameters are required to explain 96% of GPP variance.
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In a coupled ESM, land‐atmosphere interactions would modulate these parameter effects, which could dampen
parameter effects. While we feel relatively confident identifying influential parameters using land‐only simu-
lations, projecting their exact impacts in a coupled framework will require coupled model sensitivity tests.

We repeated parameter ranking analyses in each of nine Whittaker biomes (see Section 2.6). We found that the
parameters controlling LAI, for example, vary significantly by biome (Figure 7). Plant hydraulics parameters
were the most important in the tropical rain forest, photosynthetic capacity in the boreal forest, and runoff and soil
evaporation in the temperate grassland/desert biome. The most influential parameters for LAI globally included
parameters that were important in each of these three biomes.

In this paper, we focus primarily on global and biome‐level parameter rankings. However it is also possible to
inspect the geographic footprint of parameter perturbations by projecting the sparsegrid output to standard lat/lon
coordinates (see Section 2.3 for details). For example, perturbing the medlynslope parameter (which controls
stomatal conductance) has a large effect on global runoff, but primarily via its effects in vegetated areas
(Figure 8). Because the number of potential variables, parameters, and geographical ranges of interest to the wider
CLM community is larger than we can document here, we provide a tool that can be used to explore an extended
diagnostics set which summarizes the >2 TB of output data via approximately 2,000 plots (https://webext.cgd.
ucar.edu/I2000/PPEn11_OAAT). The diagnostics website includes ranking plots (as in Figure 7) and maps of
parameter effects (as in Figure 8). These plots are repeated across a combination of model output variables and
model parameters. Likewise figures are repeated for each of the various forcing scenarios.

4. Discussion
In this project, we identified and perturbed 211 CLM parameters to create a large one‐at‐a‐time PPE. There were
several barriers to perturbing the full set of CLM‐BGC parameters. First, many parameters had not been officially

Figure 6. The eight most influential parameters (ranked by absolute parameter effect) on net ecosystem production (top row) in the control simulations (a), high CO2
simulations (b), and the relative response to high CO2 (c), as well as on evapotranspiration (ET, bottom row) in the control simulations (d), future climate simulations
(e) and the relative response to future climate (f). The solid lines span the range between the two simulations for each parameter, with an open circle indicating the
simulation where a parameter is set to its minimum value and a filled circle for its maximum. The lines are color‐coded according to scientific domain. The dashed lines
indicate the value in the simulation with default CLM5.1 parameters. The parameters that are most influential on present‐day climate (a), (d) can differ significantly from
the parameters that control the response to forcing perturbations (c), (f).
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identified as parameters. In such cases, we identified hard‐coded values, established an appropriate parameter
name, and extracted that parameter to the CLM parameter file for easier manipulation. Though we perturbed a
large number of parameters across a variety of CLM processes (Figure 1), this still does not cover the full set of
CLM parameters, as some processes were not included, such as crop phenology and management. In carrying out
this process of parameter identification, we likewise unearthed many nuances in the epistemology of what
“parameters” are in the context of Earth system models. For instance, is soil texture a forcing variable or a
parameter? Defining the parameters within a given model structure can be somewhat subjective, such that it
would be difficult to collate a comprehensive or definitive set of parameters for a model like CLM. e.g., for
several empirical regressions, we scaled the slope and intercept terms in tandem, because we lacked sufficient
information to define two independent perturbation ranges.

The second challenge involved defining a perturbation range for each parameter. We solicited expert judgment to
set a minimum andmaximum reasonable value for each parameter. In some cases, literature values were explicitly
used (e.g., for the slope parameter of the stomatal conductance model, “medlynslope”, Lin et al. (2015)), but the
most common range was ±20%. It is exceedingly difficult to set parameter ranges that sample comparable
probability density, even in a univariate experiment, like this one. The number of parameters is large, with many

Figure 7. The eight most influential parameters (ranked by absolute parameter effect) on leaf area index within the control
ensemble, globally and within three biomes. Lines and circles are as described in Figure 6. Parameter rankings vary by
biome, with the global rankings seeming to reflect contributions from each of these three biomes.

Figure 8. Map of the effect of perturbing the medlynslope stomatal conductance parameter on runoff within the control
ensemble. Increasing medlynslope tends to reduce runoff, but only in regions with sufficient vegetation activity. This is one
example of many plots available online (https://webext.cgd.ucar.edu/I2000/PPEn11_OAAT) in a broader diagnostics set.
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lacking sufficient empirical backing for robust range evaluation. Defining appropriate ranges for the full suite of
land model parameters is a major activity of the scientific subdomains that comprise land models (Kattge
et al., 2020). Even with parameters that have an empirical basis from field studies, uncertainty quantification is
difficult due to the scale mismatch between site‐level observations and land model grid cells (Y. Liu et al., 2021).
As such, we cannot claim that the parameters are equivalently sampled, whereby parameter effects and parameter
rankings could be subject to sampling asymmetries.

The third challenge involved managing computational cost. Quantifying parameter effects is a necessary pre-
requisite to automated calibration and uncertainty quantification. Because the parameter space of CLM is quite
large and the model response is potentially non‐linear, large ensembles are required to adequately resolve
response surfaces. With standard CLM configurations, such ensembles would far exceed our computing re-
sources. As such, the computational cost of inferring parameter effects is a major constraint. We were able to
reduce ensemble generation computational cost 500x by strategically reducing the number of model grid cells
(Figure 3) and by leveraging a Semi‐Analytic Spin‐Up (SASU) offered by the matrix approach to land
biogeochemistry models (Liao et al., 2023; Lu et al., 2020; Luo et al., 2022) (see Sections 2.2 and 2.3 for details).
As long as computational resources remain constrained, designing faster model configurations and efficient
sampling strategies will be important for effective model calibration and uncertainty quantification.

Our sparsegrid formulation allows us to run far fewer gridcells than a standard rectilinear grid, but at the cost of
model fidelity. We visualized interannual variations in global GPP for different sparsegrids (Figure 3) to
demonstrate the tradeoff between number of clusters and representational accuracy. A wider array of scoring
metrics (Figure S3 in Supporting Information S1, using the ILAMB2.5 scoring methodologies, Collier
et al., 2018) shows that scores continue to improve beyond 400 clusters (our choice for these experiments). For
example, bias scores for total carbon stocks are consistently lower than other variables and may require a larger
number of clusters or an alternative clustering strategy that accounts for the outsized influence of high latitude
grid cells. The sparsegrid configuration will generate a coarse understanding of parameter effects at low
computational cost, that can be honed by iteratively increasing the number of clusters or by supplementing with
full grid simulations.

For this experiment we opted for a one‐at‐a‐time perturbation strategy, testing a minimum and maximum value
for each parameter. We found that parameter effects could be quite large, in some cases exceeding the effects of
our forcing scenarios (Figure 4). That said, the majority of parameter perturbations had small effects for any
specific model variable or metric, such that a majority of simulations were clustered around the default simulation
(Figure 4e). In the case of canopy evaporation, for example, more than 95% of the ensemble variance could be
explained by the 10 most influential parameters (Figure 5). This indicates that there may be tractable parameter
estimation sub‐problems if global calibration of all 211 parameters proves infeasible.

We opted for six forcing scenarios to identify parameter effects not just in present‐day but in response to pre‐
industrial or future climate conditions. The parameters that were most influential under present‐day conditions
did not necessarily match the set of parameters controlling the response to future forcing (Figure 6). We found that
many acclimation parameters, which were not as important for determining present‐day ET, were among the most
influential on the response of ET to future climate. This emphasizes the value of testing models not only under
mean‐state conditions, but also under experimentally perturbed conditions under global change analogs (Wieder
et al., 2019). These acclimation parameters likewise would not be constrained by observations of mean ET,
indicating that alternative metrics may be required or that we may lack capacity to reduce projection uncertainties
associated with these parameters.

Furthermore, because parameter values in CLM are time‐invariant, plants must be able to survive pre‐industrial
conditions in order to be present for the later stages of a transient simulation, such as those performed for many
model intercomparison experiments. Several perturbations did indeed cause survivability issues (Figure S2 in
Supporting Information S1), in which case we opted to constrain the parameter ranges until all PFTs were able to
survive in the low CO2, control, and pre‐industrial climate simulations. In future experiments we may instead opt
for fully transient simulations from 1850 to 2100, as the computational cost is comparable given the overhead of
independent spinups for each forcing scenario.

Just as the most influential parameters varied by forcing scenario, parameter rankings varied significantly by
biome (Figure 7). Different PFTs present varying trait strategies, and different climates impose unique challenges
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to vegetation activity, such as light availability, extreme temperatures, or water stress. As such, perturbations that
serve to ease or exacerbate the most substantial environmental stress for the set of PFTs in a given biome will have
greater effect. For example, modifying photosynthetic capacity (via jmaxb0, which sets baseline proportion of
nitrogen allocated for electron transport) has a large effect in boreal forests, as light is relatively limiting at high
latitudes. Understanding the regional signatures of parameter perturbations is important for model calibration.
Previous efforts have experienced difficulty resolving regional biases due to a limited amount of parameter
flexibility. For example (Dagon et al., 2020), could not simultaneously optimize plant productivity in the Amazon
and Sahel regions. In some cases, perturbing PFT‐specific parameters independently could aid in providing
regional levers for bias reduction. In our experiments, PFT‐specific parameters were perturbed in unison, but their
effects can be analyzed by PFT for many variables that are modeled at the PFT‐level, such as photosynthesis and
transpiration. To first order, we expect that PFT‐specific parameter effects will be independent, but CLM does
feature some implicit competition among natural vegetation PFTs, such as through a shared soil moisture
reservoir, which could impose some cross PFT interaction.

A one‐at‐a‐time PPE cannot capture parameter interactions, and our min/max sampling protocol precludes
diagnosing non‐linearities. As such, this data set will be insufficient for most calibration activities or for esti-
mating overall parametric uncertainty (Raoult et al., 2024). A primary utility of our data set is that we can di-
agnose parameter effects without the uncertainty contributed by an emulator or a regression model. As such, it is
easy to diagnose which parameters are most influential on a given process. We have published a large set of
ensemble diagnostic plots online (https://webext.cgd.ucar.edu/I2000/PPEn11_OAAT/), which serves as a valu-
able enhancement to our model technical documentation. Now, in addition to seeing the definition of a given
parameter, and the relevant equations, a model user can easily investigate the magnitude and spatial patterns of its
effects (e.g., Figure 8). This could be useful for investigating obvious model deficiencies, such as regional LAI
biases, or to understand potential model responses under different forcing scenarios (e.g., plant survival under low
CO2 conditions).

Another caveat is that our PPE utilizes land‐only simulations, with prescribed atmospheric forcing. This is likely
to be adequate for estimating many land surface fluxes and pools, in particular of carbon, but precludes the in-
fluence of land‐atmosphere feedbacks. This could lead to biased estimates of water and energy fluxes, as at-
mospheric feedbacks can modify the state of the land surface itself (Laguë et al., 2019). Likewise, fire parameters,
which were not among the most important parameters for global ET, NEP, or LAI, may still influence the coupled
model when coupled fire emissions are allowed to modify aerosol loads. Additional work is ongoing to extend this
work in a coupled model framework to quantify how much, where, and for which processes atmospheric feed-
backs are likely to modulate land parameter effects substantially. Furthermore our experiments are conducted at
nominal 2‐degree resolution, certain processes subject to land heterogeneity may respond differently at higher
resolution, such as permafrost depth in the Arctic (Schickhoff et al., 2024). Our expectation is that relative
parameter rankings are likely robust, but that the absolute value of parameter effects may be significantly biased
relative to their effects in the coupled model.

5. Conclusion
The primary deliverable of this project is the PPE data set that captures the effects of 211 parameters on a wide
range of CLM variables across six forcing scenarios. Several spin‐off projects have leveraged this data set,
including some that have already reached publication (Cheng et al., 2023; Yan et al., 2023a, 2023b). These
projects utilized our ensemble to filter for parameters that influence the relevant study domains and variables, and
performed follow‐on experiments using the parameter ranges collated in Section 2.5. Maintaining, improving,
and interpreting complex land models benefits from thoughtful investment in software to automate and routinize
important components of the development process, such as the International Land Model Benchmarking system
(Collier et al., 2018). Therefore we also see the infrastructure underpinning our experiment as a major deliverable.
Our project has accelerated parameter exploration work within our collaborator network by providing:

• Parameter ranges for more than 200 parameters
• Purpose‐built unstructured grid (sparsegrid)
• Accelerated spinup procedure
• Ensemble generation scripting toolchain
• Global, PFT, and biome‐level parameter sensitivity diagnostics across six forcing scenarios
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The software, data sets, and analysis tools generated to enable and utilize this experiment will greatly reduce the
burden of generating future PPEs and parameter sensitivity experiments. Due to the large parameter space of
comprehensive land models like CLM, reducing model computational costs can expand the scope of feasible
parameter estimation problems. All of the code to generate this ensemble is available via github. We have also
made available the collated parameter ranges and the output from this ensemble (see the Open Research Section
for details).

We have already started a follow‐on activity that perturbs a subset of important parameters with a more exhaustive
sampling approach to work toward calibration of LAI. By investing in the infrastructure that we introduce here, all
of our subsequent parameter perturbation experiments have required much less time and effort. We continue to
extend our efforts in this domain toward model calibration and uncertainty quantification, and we anticipate
repeating this foundational one‐at‐a‐time experiment with subsequent model releases. Reducing both the human
and computer time required for these experiments is allowing us to repeat them more frequently through the
model development cycle.

Data Availability Statement
The model code for this experiment is contained in a development tag of the CTSM (https://github.com/
ESCOMP/CTSM/tree/branch_tags/PPE.n11_ctsm5.1.dev030). The CTSM component set longname is:
2000_DATM%GSWP3v1_CLM51%BGC_SICE_SOCN_SROF_SGLC_SWAV_SIAC_SESP. A relatively
small (∼700MB), post‐processed data set is publicly available online (Kennedy et al., 2025). All of the figures on
our diagnostics website (https://webext.cgd.ucar.edu/I2000/PPEn11_OAAT) can be made from this one file. The
raw data set will be available on the NSF‐NCAR computing system, and can be made available online as well, if
use cases exist beyond this smaller file. Ensemble generation scripts are available via: https://github.com/
djk2120/ppe_tools. All of the code to make the figures in this manuscript is available via: https://github.com/
djk2120/oaat_clm5_ppe.
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