CLIMATE FEEDBACKS

Drought-induced peatland carbon loss exacerbated by elevated CO₂ and warming

Quan Quan¹†, Jian Zhou¹†, Paul J. Hanson², Daniel Ricciuto², Stephen D. Sebestyen³, David J. Weston⁴, Jeffrey P. Chanton⁵, Rachel M. Wilson⁵, Joel E. Kostka⁶, Yu Zhou⁷, Ning Wei¹, Lifen Jiang¹, Melanie A. Mayes², Jonathan M. Stelling², Andrew D. Richardson^{8,9}, Mirindi Eric Dusenge¹⁰, Danielle Way^{10,11,12}, Jeffrey M. Warren², Yiqi Luo¹*

Extreme drought events are predicted to increase with climate change, yet their impacts on ecosystem carbon dynamics under warming and elevated carbon dioxide (eCO₂) remain unclear. In a peatland experiment with five warming treatments each under ambient carbon dioxide (aCO₂) and eCO₂ (+500 parts per million), a 2-month extreme drought in 2021 reduced net ecosystem productivity by 444.0 \pm 65.8 and 736.6 \pm 57.8 grams of carbon per square meter at +9°C under aCO₂ and eCO₂, respectively—228.6 \pm 56.8% and 381.9 \pm 83.4% of the reduction at +0°C under aCO₂. This exacerbation was driven by warming-induced water table decline, prolonged low water tables, and CO₂-enhanced substrate availability through increased plant carbon inputs. Findings indicate that future climate will greatly amplify carbon loss during extreme drought, reinforcing positive carbon-climate feedbacks.

The latest Intergovernmental Panel on Climate Change (IPCC) report projects extreme drought events to become 1.7 to 7.2 times more frequent if the surface temperature increases by 4°C in the near future (1). Studies examining the effects of extreme drought under current climates (2–7) suggest that more frequent extreme drought events have the potential to substantially affect ecosystem carbon (C) cycling. For example, Ciais et al. reported a 30% decline in gross primary productivity over Europe during the 2003 European summer drought, resulting in a net C release of 0.5 Pg C year⁻¹, which is equivalent to 4 years of C sequestration under nondrought conditions (8). Similarly, Wolf et al. found that the 2012 US summer drought reduced net ecosystem productivity (NEP) by 0.23 Pg C per season throughout the United States, with a 71% reduction in the Great Plains, United States (9). These severe impacts represent large-scale declines in plant growth and increased mortality (4, 5), which can offset ecosystem C sinks and even reverse them into C sources across both time and space (3, 5, 10-13). Such disruptions could intensify positive climate-C feedback, accelerating future warming (14, 15). However, how extreme drought events will influence NEP in a future world with

¹Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA. ²Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. ³Northern Research Station, Forest Service, US Department of Agriculture (USDA), Grand Rapids, MN, USA. ⁴Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. ⁵Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA. ⁶School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA. ⁷Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland. ⁸Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA. ⁹School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA. ¹⁰Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australia. ¹¹Department of Biology, The University of Western Ontario, London, ON, Canada. ¹²Nicholas School of the Environment, Duke University, Durham, NC, USA. **Corresponding author. Email: yl2735@cornell.edu †These authors contributed equally to this work.

higher temperatures and elevated carbon dioxide (e CO_2) concentration remains unclear.

Field experiments offer opportunities to study the impacts of extreme drought events on ecosystem C processes under future climate scenarios (16, 17). For example, during experimental warming that increased soil temperature by up to 2.6°C and air temperature by 1.1°C in a tallgrass prairie of the Great Plains from 1999 to 2019, an extreme drought event in 2011 reduced NEP by 23.5% under ambient temperature but 53.5% under warming with clipping (18). In a temperate peatland ecosystem, an extreme summer drought event in 2018 reduced NEP by approximately 57.8% compared with a nondrought year (2020) under ambient temperature and by around 146.2% under +3.2°C warming (19). In addition to warming, eCO2 is another key driver of future climates. Numerous studies in upland ecosystems have shown that eCO₂ can mitigate the negative drought impacts on ecosystem C sequestration by stimulating photosynthesis (20-22), conserving water (21, 23, 24), and improving plant water-use efficiency (22, 25). However, to the best of our knowledge, no studies have examined the impacts of naturally occurring extreme drought events on NEP in a field experiment combining eCO_2 and warming in peatland or other ecosystems (26).

Peatlands, although covering only 3% of the land surface, store around 500 billion tonnes (Gt) C (nearly one-third of the world's soil C or about half of the C stored in the atmosphere) because of waterlogging conditions that inhibit decomposition (27-29). Climate warming driven by eCO₂ and associated extreme events pose a great threat to peatland C sequestration (30-32). Understanding how the large peatland C stocks respond to extreme drought events under combined warming and eCO₂ is essential so that we can accurately predict the global C budget and future climate. To study peatland response to future climate scenarios, the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project was established as a longterm field experiment that has five whole-ecosystem warming levels $(+0^{\circ}, +2.25^{\circ}, +4.5^{\circ}, +6.75^{\circ}, and +9^{\circ}C)$ each under two CO_2 levels (ambient and +500 parts per million) in a northern boreal peatland in Minnesota, United States. The warming gradients were designed to capture the upper limit $(8.3^{\circ} \pm 1.9^{\circ}C)$ of projected high-latitude warming under Representative Concentration Pathway 8.5 (RCP8.5) by 2100 (33).

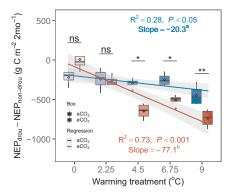


Fig. 1. Effects of extreme drought on NEP under different warming and CO_2 scenarios. NEP_{drou} and NEP_{non-drou} represent NEP in the 2 months (July and August) in drought year 2021 and nondrought years, respectively. The lower and upper boundaries of the boxplots indicate the 25th and 75th quartiles. The center lines indicate the median values, the rhombus-shaped points inside the boxes indicate the mean values, and the whiskers indicate 1.5 times the interquartile range (IQR). The fitted lines indicate regressions, and the shaded bands indicate 95% confidence intervals (Cls). Different letters denote significantly different slopes. P values were adjusted by using the Benjamini-Hochberg false discovery rate correction for multiple comparisons. Differences between aCO₂ and eCO₂ under each warming treatment are ns, not significant; *P < 0.05; **P < 0.01.

An extreme drought event at the SPRUCE site in 2021 (July-August) substantially lowered the water table to levels below the 10th percentile of the historical range from 1961 to 2021 (fig. S1). The average water table during this period was 411.93 m above sea level, close to the lowest record of 411.82 m during the same period in 1976, the driest year since 1961. This drought lowered the water table depth (WT) by 0.24 m on average in the control plot [+0°C under ambient CO2 (aCO2)], which is consistent with reported declines of 0.2 to 0.3 m in other northern peatlands during extreme drought events (34-36). Taking advantage of this concurrence of a peatland warming and eCO₂ experiment with an extreme drought event in 2021, we explored the response of peatland NEP to the natural extreme drought event under five warming and two CO₂ levels. We hypothesize that (i) an extreme drought event and warming promote reduction in NEP, likely by exacerbating water table drawdown, increasing soil aeration, and enhancing microbial decomposition, and (ii) eCO₂ offsets the NEP reduction, potentially buffering the C loss under extreme drought and warming.

Effects of extreme drought on NEP under warming and eCO₂

The extreme 2-month drought (July and August) in 2021 significantly reduced NEP by 217.9 \pm 46.4 g C m $^{-2}$ (mean \pm SE) (P<0.05) at ambient temperature and aCO $_2$ in comparison with that in nondrought years (2016–2019) (no measurement was made in 2020 because of the COVID-19 pandemic) (Fig. 1). This drought effect is comparable in magnitude with the annual NEP declines (range, 218 to 234 g C m $^{-2}$) reported in other northern peatlands because most of these annual

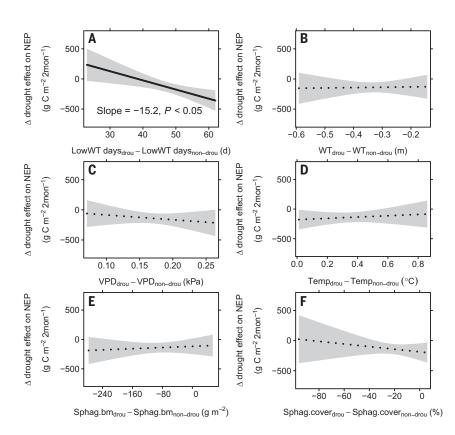


Fig. 2. Difference in drought effects on NEP between aCO₂ and eCO₂ treatment as related to various predictors. The difference, denoted by Δ drought effect on NEP, depends on drought-induced changes in (A) number of low-water-table (LowWT, below -0.25 m) days, (B) WT, (C) VPD, (D) temperature (Temp), (E) Sphagnum biomass (Sphag.bm), and (F) Sphagnum coverage (Sphag.cover), respectively. The fitted lines indicate the estimated effect of each predictor while controlling all other predictors. Solid lines indicate significant effects, and dashed lines indicate insignificant effects, with a significance level set at $\alpha = 0.05$. The shaded bands indicate 95% Cls.

losses occurred during the drought period (37, 38). At ambient temperature and eCO₂, the NEP insignificantly increased by 8.6 ± 79.4 g C m⁻² (P>0.05) (Fig. 1) during the drought event, likely because of enhanced water-use efficiency and photosynthesis under eCO₂ offsetting the negative impact of drought (22, 25, 26, 39). However, at +9°C, the drought event caused a notable decrease in NEP by 444.0 ± 65.8 g C m⁻² (P<0.01) under aCO₂ and 736.6 ± 57.8 g C m⁻² (P<0.01) under eCO₂ over 2 months compared with NEP in the nondrought years (Fig. 1). The NEP response to the extreme drought under warming and eCO₂ was primarily due to increased ecosystem respiration (ER). Both of the factors (warming and eCO₂) significantly amplified the drought-induced increase in ER (fig. S2, A and B). Specifically, ER increased by 513.7 ± 44.0 g C m⁻² (P<0.01) under aCO₂ and 651.7 ± 98.1 g C m⁻² (P<0.01) under eCO₂ at +9°C during this extreme drought compared with that in the nondrought years.

Mechanisms driving amplified C loss under eCO₂ during drought

The difference in drought effects on NEP between a $\rm CO_2$ and e $\rm CO_2$ was significantly negatively correlated with drought-induced changes in number of days with WT below -0.25 m (Fig. 2 and table S1). As shown in fig. S3, significant correlations emerged only when the water table fell below -0.25 m, suggesting it as a critical threshold for strong C flux response to drought. This aligns with the range of -0.2 to -0.3 m that is reported for other peatlands where C cycling is strongly affected (40-43). In addition, drought-induced declines in WT and increases

in vapor pressure deficit (VPD) led to greater increases in ER under eCO₂ (fig. S4 and table S2). eCO₂ could amplify the increase in ER induced by water table decline by enhancing the supply of labile C from leaf litterfall and root exudation (44-46), which facilitate decomposition, and by accelerating belowground C turnover (47, 48). Globally, eCO₂ significantly increases leaf and root biomass by 21 and 45%, respectively; increases microbial biomass by 21%; and stimulates soil respiration by nearly 30% (47). At the SPRUCE site, we also found increased plant-derived C substrates under eCO₂. Before the eCO₂ treatment started in 2014, peat soil carbohydrate concentrations were similar between plots assigned to aCO₂ and eCO₂ treatments. However, they increased significantly in the eCO₂ plots after 4 years of eCO₂ treatment in 2019 (P < 0.01) (Fig. 3), averaging 33.7% compared with 28.7% under aCO₂ across the soil profile to a depth of 2 m. Moreover, hydrolysable biopolymers increased by nearly 20% under eCO2 after 2 years of the eCO2 treatment (49), which may contribute to the overall 5% increase in carbohydrate content and higher porewater CO2 concentrations under eCO2 across the peat soil profile, at depths of up to 2 m (Fig. 3) (50). Thus, as drought deepened the water table, more C substrates accumulated under eCO2 became exposed to oxygen, leading to increased CO₂ release through respiration.

As the number of days with WT below $-0.25~\mathrm{m}$ increased, the effect of eCO₂ on the impact of drought on gross ecosystem productivity changed from mitigation to exacerbation (fig. S5 and table S3), reflecting a dependence on drought duration, which in our study was mainly driven by the warming treatments. Under a short-term drought condition, eCO₂ generally enhances photosynthesis and water-use efficiency while delaying stomatal closure, allowing plants to maintain higher C uptake (amplified CO₂ fertilizer effect) (25, 39, 51). However, prolonged severe drought can impair stomatal function and photosynthetic

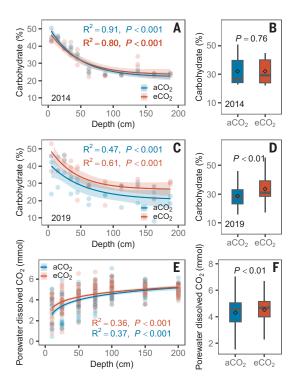


Fig. 3. Carbohydrate and porewater dissolved CO_2 concentrations in peat soil under aCO_2 and eCO_2 . (A to D) Depth profiles of carbohydrate concentrations in [(A) and (B)] 2014 (before the eCO_2 treatment) and [(C) and (D)] 2019 (after the eCO_2 treatment). (E and F) Depth profile of porewater dissolved CO_2 concentrations between aCO_2 and eCO_2 . The lower and upper boundaries of the boxplots indicate the 25th and 75th quartiles. The center lines indicate the median values, the rhombus-shaped points inside the boxes indicate the mean values, and the whiskers indicate 1.5 times the IQR. The fitted lines indicate regressions, and the shaded areas indicate 95% Cls.

structures (52). In such conditions, eCO₂-induced premature leaf senescence and abscission, along with excessive stomatal closure, can intensify the negative impact of drought on C uptake (53, 54). Ridge regression analysis, which accounts for collinearity among drought-induced changes in all these potential causal variables (the number of low-water-table days, WT, VPD, temperature, and *Sphagnum* biomass and coverage), further supported these results (fig. S6). The differences in C flux responses to drought between aCO₂ and eCO₂ were not caused by differential drought responses of these factors because these responses were similar (figs. S7 and S8) and did not significantly differ between the two CO₂ treatments (figs. S9 to S11). Overall, with greater water table decline and an increased number of days with low water table, warming and eCO₂ jointly promote C release and suppress C uptake, exacerbating the decline in NEP during extreme drought.

Mechanisms driving amplified C loss under warming during drought

Under both CO_2 treatments, warming significantly amplified the drought-induced reductions in NEP. The temperature sensitivity of this response was 77.1 g C m⁻² °C⁻¹ under eCO₂, which is significantly greater than the 20.3 g C m⁻² °C⁻¹ under aCO₂ (P < 0.001) (Fig. 1). Warming can directly exacerbate peatland C loss during drought by shifting plant and soil fungal communities and enhancing the activity of C-degrading enzymes, which stimulates decomposition of recalcitrant deeper peat, as shown in many studies (30, 55–57). Under nondrought conditions, it has been estimated that a 1°C increase in temperature

reduces NEP by 17.0 [95% confidence interval (CI): 8.0 to 26.0] g C m⁻² year⁻¹ across 16 northern peatland sites, which is comparable with the 24.6 (95% CI: 17.6 to 33.5) g C m⁻² year⁻¹ reduction observed in the SPRUCE site (58). In addition, warming strongly amplifies droughtinduced water table decline (fig. S9), exposing more peat to aerobic decomposition. A study showed that a water table decline of >0.3 m can strongly accelerate microbial respiration by 123% across global boreal peatlands (43). In our study, although warming did not significantly alter drought's effects on other variables (figs. S10 and S11), it significantly enhanced the water table decline and the number of low-water-table days during drought (fig. S9). Further analysis showed that warmingaggregated water table decline significantly contributed to warmingamplified increase in ER and decrease in NEP during drought (fig. S12). Moreover, warming promotes substrate availability for microbial decomposition in peatlands (57, 59, 60), which in combination with drought further accelerates peat soil C loss. Specifically, at the SPRUCE site, warming strongly promoted shrub fine-root growth by 1.2 km m^{-2} year $^{-1}$ °C $^{-1}$ in 2016 and by 2.54 km m $^{-2}$ °C $^{-1}$ during the growing season (June to October) of 2017 (61). Increased belowground C allocation and root-derived labile metabolites primarily contributed to peat C release under warming (31, 49, 50, 62). All of these processes will lead peatlands to lose more C under warming during extreme drought events.

Implications

These findings support our first hypothesis that warming intensifies peatland C loss during extreme drought events by enhancing microbial decomposition and lowering the water table. However, contrary to our second hypothesis, eCO₂, which typically mitigates drought impacts in upland ecosystems, exacerbated C loss in peatland by providing more substrate for decomposition and suppressing C assimilation under extreme drought and warming (44–47, 53, 54, 60, 63–66). The exacerbated peatland C loss during extreme drought under warming and eCO₂ (228.6 \pm 56.8% and 381.9 \pm 83.4% of the control at +9°C under aCO₂ and eCO₂, respectively) far exceeds that observed under current climates. This suggests that peatland C sinks may become increasingly vulnerable to future climate extremes.

In this study, the extreme drought period was defined on the basis of ambient water table dynamics. Whereas ambient plots exhibited water table drawdown and recovery during this period, warming plots experienced deeper and more prolonged water table drawdown without recovery during this period, likely because of higher VPD and evapotranspiration. This divergence explains the greater C loss under warming and eCO₂, underscoring that future droughts and their impacts could be much more severe than under the current climate. Our current analysis excluded NEP responses during the recovery phase under warming because it extended beyond the extreme window defined by ambient conditions. If the water table recovery phases were considered, the delayed recovery phases may cause more C loss under warming and eCO₂. Therefore, the recovery phase warrants further investigation (10, 26).

Whether the warming- and eCO₂-amplified drought effects on C loss are short- or long-term remains an open question. Drought temporarily increases aerobic conditions, enhancing decomposition. However, when the water table recovers, peat returns to anaerobic conditions that slow decomposition. Moreover, much of the labile C may have already been decomposed during drought, potentially limiting post-drought decomposition. If drought persists, shifts in plant communities and organic C inputs could introduce new feedbacks that alter photosynthesis and decomposition over longer timescales (67, 68). Whereas our short-term observations show that warming and eCO₂ immediately amplified C loss under extreme drought, the long-term impacts will depend on ecosystem responses to drought duration, frequency, and the combined effects of warming and eCO₂ (67, 68).

Undisturbed northern peatlands are weak net C sinks, with longterm C accumulation rates ranging from 3 to 80 g C m⁻² year⁻¹ over

RESEARCH ARTICLES

the past millennium (69), which is comparable with the 8 to 82 g C m⁻² year⁻¹ measured at the SPRUCE site (70, 71). This short-term NEP loss during the extreme drought event at +9°C under eCO₂ would erase 9.0 to 92.1 years of net C accumulation at the SPRUCE site, or potentially 9.2 to 245.5 years in other northern peatlands. Our study did not quantify drought impacts on methane (CH₄) emissions because it accounts for only a small fraction (7%) of ecosystem C exchange in northern peatlands (72) and typically approaches zero under drought condition when the water table drops to approximately -0.2 to approximately -0.3 m (42, 67, 73). Thus, it likely contributes little to net C loss during extreme drought. Consistent evidence from peatland studies shows that the increased CO₂ emission in response to drought and water table drawdown overwhelmingly outweighed the cooling effect from a reduction in CH₄ production, yielding a net warming effect (42, 74, 75). As extreme drought events become more frequent, our findings suggest that episodic C losses during the short-term droughts may substantially undermine long-term peatland C sequestration under future climate scenarios and pose a greater threat to the global C balance than current climate-based projections suggest.

REFERENCES AND NOTES

- IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds. (Cambridge Univ. Press, 2021).
- B. D. Stocker et al., Nat. Geosci. 12, 264–270 (2019).
- A. Bastos et al., Sci. Adv. 6, eaba2724 (2020).
- 4. E. Martínez-García et al., Nat. Geosci. 17, 197-204 (2024).
- A. C. Bennett et al., Nat. Clim. Chang. 13, 967–974 (2023).
- 6. D. Gampe et al., Nat. Clim. Chang. 11, 772-779 (2021).
- 7. O Ouan et al. Cai Adv. E appy1121 (2010)
- 7. Q. Quan *et al.*, *Sci. Adv.* **5**, eaav1131 (2019).
- 8. P. Ciais et al., Nature **437**, 529–533 (2005).
- 9. S. Wolf et al., Proc. Natl. Acad. Sci. U.S.A. 113, 5880-5885 (2016).
- 10. C. Werner et al., Science 374, 1514-1518 (2021).
- 11. Y. Yang et al., Nat. Commun. 9, 3172 (2018).
- 12. J. Liu *et al.*, *Sci. Adv.* **10**, eadl2201 (2024).
- 13. O. L. Phillips et al., Science 323, 1344-1347 (2009).
- 14. M. Reichstein et al., Nature 500, 287-295 (2013).
- 15. D. Frank et al., Glob. Chang. Biol. 21, 2861–2880 (2015).
- 16. S. Sippel et al., Curr. Clim. Change Rep. 4, 266-286 (2018).
- 17. J. Song et al., Nat. Ecol. Evol. 3, 1309–1320 (2019).
- 18. C. G. Jung et al., Agric. For. Meteorol. 276-277, 107635 (2019).
- 19. S. Salimi, M. Berggren, M. Scholz, Glob. Chang. Biol. 27, 5154-5168 (2021).
- 20. K. E. Mueller et al., Ecol. Lett. 19, 956-966 (2016).
- 21. J. A. Morgan et al., Nature 476, 202-205 (2011).
- 22. P. M. A. Fransson et al., New Phytol. 152, 431-442 (2001).
- 23. J. Radolinski et al., Science 387, 290-296 (2025).
- 24. S. Leuzinger, C. Körner, Glob. Change Biol. 13, 2498–2508 (2007).
- 25. Z. Wang, C. Wang, S. Liu, J. Ecol. 110, 2836-2849 (2022).
- 26. J. Roy et al., Proc. Natl. Acad. Sci. U.S.A. 113, 6224-6229 (2016).
- 27. J. Limpens et al., Biogeosciences 5, 1475-1491 (2008).
- 28. P. Friedlingstein et al., Earth Syst. Sci. Data 15, 5301–5369 (2023)
- Z. Yu, J. Loisel, D. P. Brosseau, D. W. Beilman, S. J. Hunt, Geophys. Res. Lett. 37, 2010GL043584 (2010).
- 30. E. Dorrepaal et al., Nature 460, 616-619 (2009).
- 31. A. L. Gill, M. A. Giasson, R. Yu, A. C. Finzi, Glob. Chang. Biol. 23, 5398-5411 (2017).
- 32. S. Page et al., Nat. Rev. Earth Environ. **3**, 426–443 (2022).
- IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds. (Cambridge Univ. Press, 2013).
- M. Lund, T. R. Christensen, A. Lindroth, P. Schubert, Environ. Res. Lett. 7, 045704 (2012).
- J. Bubier, P. Crill, A. Mosedale, S. Frolking, E. Linder, Global Biogeochem. Cycles 17, 2002GB001946 (2003).
- T. Ise, A. L. Dunn, S. C. Wofsy, P. R. Moorcroft, Nat. Geosci. 1, 763–766 (2008).
- 37. R. Garisoain et al., J. Geophys. Res. Biogeosci. 129, e2024JG008041 (2024).
- 38. C. Estop-Aragonés, K. Zając, C. Blodau, Glob. Chang. Biol. 22, 2285–2300 (2016).
- 39. E. A. Ainsworth, S. P. Long, *Glob. Chang. Biol.* **27**, 27–49 (2021).
- 40. N. Fenner, C. Freeman, *Nat. Geosci.* **4**, 895–900 (2011).
- 41. D. Olefeldt et al., Glob. Chang. Biol. 23, 2428–2440 (2017).
- 42. C. D. Evans et al., Nature 593, 548-552 (2021).
- 43. L. Ma et al., Commun. Earth Environ. 3, 254 (2022).

- S. Q. Wan, R. J. Norby, K. S. Pregitzer, J. Ledford, E. G. O'Neill, New Phytol. 162, 437–446 (2004).
- 5. R. B. Jackson, C. W. Cook, J. S. Pippen, S. M. Palmer, *Ecology* **90**, 3352–3366 (2009).
- 46. C. A. Dietzen et al., Glob. Chang. Biol. 25, 2970-2977 (2019).
- 47. J. Cui et al., Nat. Clim. Chang. 14, 511-517 (2024).
- 48. M. Jiang et al., Nature 580, 227-231 (2020).
- 49. N. O. E. Ofiti et al., Nat. Commun. 14, 7533 (2023).
- 50. R. M. Wilson et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2004192118 (2021).
- 51. S. Li, X. Li, Z. Wei, F. Liu, Curr. Opin. Plant Biol. 56, 174–180 (2020).
- 52. L. O. A. Abdelhakim, R. Zhou, C.-O. Ottosen, Agronomy (Basel) 12, 2526 (2022).
- 53. J. M. Warren, R. J. Norby, S. D. Wullschleger, *Tree Physiol.* **31**, 117–130 (2011).
- 54. M. G. De Kauwe, B. E. Medlyn, D. T. Tissue, New Phytol. 231, 2118-2124 (2021).
- A. Asemaninejad, R. G. Thorn, B. A. Branfireun, Z. Lindo, Soil Biol. Biochem. 120, 28–36 (2018)
- 56. A. M. Hopple et al., Nat. Commun. 11, 2373 (2020).
- 57. L. Bragazza, J. Parisod, A. Buttler, R. D. Bardgett, *Nat. Clim. Chang.* **3**, 273–277 (2013).
- 58. M. Helbig et al., Nat. Clim. Chang. 12, 743-749 (2022).
- 59. A. Volder, R. M. Gifford, J. R. Evans, *Phalaris Glob. Change Biol.* **13**, 1040–1052 (2007).
- 60. K. Meeran et al., Glob. Chang. Biol. 27, 3230-3243 (2021).
- 61. A. Malhotra et al., Proc. Natl. Acad. Sci. U.S.A. 117, 17627-17634 (2020).
- 62. R. M. Wilson et al., Nat. Commun. 7, 13723 (2016).
- 63. O. C. Calvo et al., Glob. Chang. Biol. 23, 1292–1304 (2017).
- 64. L. Xiong et al., Soil Biol. Biochem. 159, 108289 (2021).
- 65. Y. Carrillo, F. Dijkstra, D. LeCain, D. Blumenthal, E. Pendall, Ecol. Lett. 21, 1639-1648 (2018).
- N. O. E. Ofiti et al., Glob. Chang. Biol. 28, 883–898 (2022).
- 67. S. Frolking et al., Environ. Rev. 19 (NA), 371-396 (2011).
- 68. S. E. Ward et al., Ecol. Lett. 16, 1285-1293 (2013).
- 69. A. V. Gallego-Sala et al., Nat. Clim. Chang. 8, 907-913 (2018).
- 70. P. J. Hanson et al., AGU Adv. 1, e2020AV000163 (2020).
- 71. N. A. Griffiths et al., Soil Sci. Soc. Am. J. 81, 1668–1688 (2017).
- 72. Z. C. Yu, Biogeosciences 9, 4071-4085 (2012).
- 73. H. Chen, X. Xu, C. Fang, B. Li, M. Nie, Nat. Clim. Chang. 11, 766-771 (2021).
- 74. Y. Huang et al., Nat. Clim. Chang. 11, 618-622 (2021).
- 75. A. Günther et al., Nat. Commun. 11, 1644 (2020).
- Q. Quan et al., Drought-induced peatland carbon loss exacerbated by elevated CO₂ and warming, figshare (2024); https://doi.org/10.6084/m9.figshare.27857655.
- Oak Ridge National Laboratory, SPRUCE: Spruce and Peatland Responses Under Changing Environments. https://mnspruce.ornl.gov/ (n.d.).

ACKNOWLEDGMENTS

We thank the SPRUCE program and team for supporting this study. We thank the many researchers who contributed data to the SPRUCE project database. Funding: This research was conducted under the Terrestrial Ecosystem Sciences Scientific Focus Area at Oak Ridge National Laboratory (ORNL), a program funded by the US Department of Energy (DOE), Office of Science, and the Office of Biological and Environmental Research. ORNL operates under the management of UT-Battelle for the DOE under contract DE-AC05-1008 000R22725. The contributions from Y.L. EcoLab at Cornell University were supported in part by funding from the US National Science Foundation (NSF; grants DEB 2242034, DEB 2406930, and DEB 2425290), as well as by the DOE's Terrestrial Ecosystem Sciences Grant (DESC0023514). Additional support was provided through the "NYS Connects: Climate Smart Farms & Forestry" project, funded collaboratively by the US Department of Agriculture (USDA), the New York State Department of Environmental Conservation, and the New York State Department of Agriculture and Markets. This work is also part of the Al Institute for Land, Economy, Agriculture and Forestry (AI-LEAF), supported by the USDA National Institute of Food and Agriculture (NIFA) and the NSF National AI Research Institutes Competitive Award (2023-67021-39829). Contributions by J.E.K., J.P.C., and R.M.W. were supported in part by the Office of Biological and Environmental Research, Genomic Science Program, under DOE contract DE-SC0023297). Contributions and long-term monitoring by S.D.S. at the Marcell Experimental Forest were supported by the USDA Forest Service, Northern Research Station. Contributions by D.W. were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Project Grant STPGP 521445-18. Author contributions: Conceptualization: Y.L. and Q.Q. Project administration: P.J.H. Data curation: P.J.H. Investigation: P.J.H., S.D.S., D.J.W., J.P.C., R.M.W., J.E.K., M.A.M., J.M.S., A.D.R., M.E.D., D.W., and J.M.W. Visualization: Q.Q., J.Z., and Y.L. Writing – original draft: Q.Q., J.Z., and Y.L. Writing review & editing: Q.Q., P.J.H., D.R., S.D.S., D.J.W., J.P.C., R.M.W., J.E.K., J.M.W., J.Z., Y.Z., N.W., L.J., M.A.M., J.M.S., A.D.R., M.E.D., D.W., and Y.L. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data and code used in this paper have been deposited in figshare (https://doi.org/10.6084/m9. figshare.27857655) (76). All the datasets are also cited in the materials and methods and publicly available in the online SPRUCE project archive at http://mnspruce.ornl.gov (77). License information: Copyright © 2025 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.adv7104

Materials and Methods; Figs. S1 to S17; Tables S1 to S3; References (78–124); MDAR Reproducibility Checklist

Submitted 7 January 2025; accepted 9 September 2025

10.1126/science.adv7104