contrasting nutrient-mediated responses between surface and deep fine root biomass to N addition in poplar plantations on the east coast of China

Qinghong Geng, Xiaocui Ma, Jiahui Liao, Wei Wu, Shuli Niu, Yiqi Luo, Xia Xu

Keywords:
- Nitrogen addition
- Soil available nutrients
- Fine root biomass
- Surface and deep soil profile
- Vertical distribution
- Poplar plantations

1. Introduction

Fine roots play a critical role in carbon (C) cycling in terrestrial ecosystems, absorbing soil nutrients and water for sustainable plant production and releasing C through root litter and rhizodeposition (Norby and Jackson, 2000; Hendricks et al., 2006; Xia et al., 2015). It is estimated that fine roots (diameter < 2 mm) represent <2% of the total ecosystem biomass, but contribute as much as 30–70% of the global annual net primary production (NPP) (Jackson et al., 1997; Hendricks et al., 2006; Bai et al., 2015). Nitrogen (N) deposition has increased roughly three to five times over the course of the 20th century (IPCC, 2013) and is predicted to continue to increase by more than half again by 2030 relative to 2000, exceeding 50 kg N ha⁻¹ yr⁻¹ in southeastern China (Liu et al., 2013; Yu et al., 2019). The great N deposition is anticipated to have a large effect fine root biomass (FRB) by inducing soil acidification, altering availability of soil nutrients and nutrient balances, among other processes (e.g., Lu et al., 2014; Yuan and Chen, 2015; Vangelova and Pitman, 2019). However, knowledge of the responses of FRB to N deposition remains limited, especially at various soil depths with its vertical distribution along the soil profile, hindering an accurate projection of future ecosystem functions under global change.

Studies that explore fine root responses to N addition in forest ecosystems have undoubtedly advanced our understanding in recent decades, but results are inconclusive. Among these studies, results indicate that N addition may increase (e.g., Bai et al., 2008; Kou et al., 2018), decrease (e.g., Li et al., 2015; Peng et al., 2017; Wang et al., 2019), or have little impact (e.g., Ostertag, 2001; Gao et al., 2011) on fine root dynamics (including fine root production and FRB). The inconsistency in responses of fine roots to N addition may partly result from differences in nutrient limitation, sampling depths, N addition rates (and others) among studies (e.g., Gao et al., 2011; Xu et al., 2017; Yan et al., 2019).

Soil nutrient limitation, especially the availability of N and phosphorus (P), for plant growth are common among terrestrial ecosystems (Kou et al., 2015; Wang et al., 2017). One important way that N deposition affects FRB is through increasing soil N availability and unbalancing soil nutrients (Galloway et al., 2004). Increased soil N availability under N addition may cause a preferential shift in biomass allocation between roots and shoots based on optimal allocation theory (Chapin et al., 1987; Eisenstat and Yanai, 1997), leading to decreases in belowground NPP (e.g., Gong et al., 2014; Wang et al., 2019).
allocate photosynthetic products more to branches when aboveground resources decline (e.g., CO₂ and light) and more to roots when belowground resources (e.g., water and nutrients) are limited (Poorter et al., 2012). Additionally, increased soil N availability under N addition could alter plant P acquisition strategies by influencing soil properties such as pH and phosphatase activity, subsequently affecting FRB (e.g., Penuelas et al., 2013; Deng et al., 2017; Zhao and Zeng, 2019). N and P soil cycles are coupled with biological demand (Sistla and Schimel, 2012; Huang et al., 2019). For example, N addition increases tree growth in temperate and northern forests limited by N, while in subtropical and tropical forests limited by P, N application has little effect on tree growth (Tian et al., 2018). However, we know little about the role that P plays in mediating effects on N addition on FRB in forest ecosystems.

Understanding FRB distribution at various soil depths is essential in understanding forest dynamics (Li et al., 2020). Although plant root systems tend to be most abundant in topsoil and to decrease sharply with increasing soil depth (e.g., Peek et al., 2004; Zhang et al., 2018), the function of deep roots cannot be ignored (Pries et al., 2018). For example, hydraulic lift is the process where deep rooted plants can absorb water from the lower soil layers and transport it to the dry upper layer (Horton and Hart, 1998; Meier et al., 2018). Additionally, Yan et al. (2017) found N addition reduced the surface FRB (0–20 cm) and increased the deep FRB (20–40 cm) in boreal forests. However, our current understanding of the vertical distribution of fine roots along the soil profile (0–100 cm) in temperate forests to cope with resource variation is far from comprehensive. Moreover, the 95% rooting depth is considered as a key variable to quantify the interaction among plants, soil and climate (Cihlar, 1997; Xu et al., 2014). Although there have been a large number of manipulative global change experiments around the world, few have studied vertical distribution pattern of fine roots along the soil profile in response to N addition in forest ecosystems (Smithwick et al., 2013). Therefore, to accurately evaluate the soil C dynamics, further research on fine root response to N deposition requires an examination of deep root behavior.

Poplar is one of the major planted tree species in China, covering an area of >7.5 million ha. Poplar plantations play an important role in C sequestration in China (Fang et al., 2008; Wang et al., 2015). N deposition has increased dramatically in the eastern coastal areas of China in recent decades, but we know little of responses of poplar plantations to N deposition, especially the belowground (Yu et al., 2014). We thus conducted our N addition experiments to explore the effects of N addition on FRB and its vertical distribution in poplar plantations at the Dongtai Forest Farm on the east coast of China. We hypothesized that: (1) N addition reduced FRB and changed the vertical distribution pattern according to the optimal allocation theory (Chapin et al., 1987); and (2) soil available nutrients regulated FRB and its distribution along soil profile because the productivity of poplar plantation in the area is largely restricted by soil nutrient availability.

2. Materials and methods

2.1. Experimental site and design

Our experimental site locates at the Dongtai Forest Farm in Yancheng, Jiangsu Province, China (120° 49'E, 32° 52'N). The forest farm was established in 1965 and covers an area of approximately 3000 ha⁻¹. It has an oceanic and monsoon climate with mean annual temperature of 13.7 °C and precipitation is 1051 mm (Wang et al., 2015). The soil of the forest farm is sandy loam with a pH value around 8 (Bian et al., 2019). Poplar (Populus deltoids) is one of the most widely planted species on the farm.

We established an N addition experiment on an 8-year old pure poplar (Populus deltoids cv. ‘1-35’) plantation in May 2012. Stand density was 333 trees ha⁻² with the mean diameter at breast height (1.3 m height, DBH) of 23.12 cm in May 2012. The plantation had uniform site conditions that allowed us to implement precise management of sites chosen as our plots. We created a randomized block design with a five level gradient of N addition (N0: 0; N1: 5; N2: 10; N3: 15; and N4: 30 g N m⁻² yr⁻¹) in four replicate blocks (25 × 190 m²). Each N treatment plot was approximately 25 × 30 m² with a 10 m buffer zone between adjacent plots and a minimum 500 m between replicate plots. We chose a range of N addition rates relative to an ambient N deposition rate of approximately 50 kg N ha⁻¹ year⁻¹ for this area (Zhu et al., 2016). Liu et al. (2013) predict that critical loads of N deposition in Jiangsu province could exceed 200 kg N ha⁻¹ year⁻¹. In each month of the growing season (May to October) from 2012 to 2018, we calculated the annual NH₄NO₃ deposition and dissolved the sixth of this amount in 20 L water that was sprayed evenly under the canopy using a backpack sprayer to simulate natural N deposition. Each control plot received 20 L of water without NH₄NO₃.

2.2. Microclimate

Air temperature and precipitation data were derived from the National Meteorological Information Center, China Meteorological Administration. Soil temperature (ST) in the top 20 cm was measured using a thermocouple connected to an Li-Cor 6400 portable infrared gas analyzer (IRGA) (Li-COR Inc., Lincoln, NE, USA). Soil water content (SWC) in the top of 20 cm was measured using HydroSense II (HS2) (HydroSense II, Campbell Scientific, Logan, UT, USA). Soil temperature and volumetric soil water content were usually measured once in non-growing and twice in growing seasons every year.

2.3. DBH measurement and leaf and soil sampling

In June 2017 and 2018, DBH of each Poplar tree in our plots was measured with a breast-diameter ruler at the vertical height of 1.3 m above the ground from the base of the trees (Liu et al., 2018). In July 2018, we randomly selected three healthy Poplar trees in the center of each plot and collected fresh green leaves using homemade bow and arrow. The foliar samples were then mixed evenly to obtain a composite sample. Fresh green foliar samples were first deactivated of enzymes for approximately half an hour at 105 °C and, transported in several coolers to our laboratory at Nanjing Forestry University, and oven-dried for 48 h at 65 °C. Three soil samples were randomly collected using a soil corer with an inner diameter of 4 cm to a depth of 100 cm in each subplot in July 2018. The 100 cm soil cores were then evenly divided into ten layers, each of 10 cm. The three samples from each layer were combined and homogenized to obtain a representative soil sample for each subplot, which were transported in coolers to our lab for further analyses. In the lab, composite soil samples, with rocks, roots and other debris removed, were air-dried and pressed through a 2 mm sieve for soil physicochemical analysis. The concentration of total C and N in the leaf and surface fine roots (0–20 cm) were measured using an elemental analyzer (Li et al., 2018) (Elementar, Vario EL III, Elementar Analysen Systeme GmbH, Germany). We did not measure C and N contents of the fine roots from 20 to 100 cm due to the limited amount of root biomass. Soil available N (soil AN) was determined by the alkali dispersion method (Gai et al., 2021). Soil available P (soil AP) was extracted using microwave digestion and a NaHCO₃ solution then measured using the Mo-Sb colorimetric method (Zhang et al., 2020). Soil pH was measured at a soil to water ratio of 1: 2.5 air dried soil (10 g) was added into deionized water (25 ml) and shaken for 90 s with a magnetic stirrer, then the pH was measured after 30 min with lightning magnetic PHS-25 (Kou et al., 2018).

2.4. Fine root biomass and its distribution estimation

Fine root biomass was estimated using the soil coring method (Xu et al., 2013; Feng et al., 2018). Root samples were randomly collected using a soil coring with an inner diameter of 4 cm to a depth of 100 cm in each subplot in June and November each year in 2017 and 2018. Similar
to the soil samples, root cores were also evenly divided into ten layers, transported to our laboratory, and stored at -20°C before analysis. Root cores were carefully washed by wet sieving (0.5 mm) under gently flowing water and then all roots were picked out with forceps. Living fine roots (≤ 2 mm in diameter) were collected, oven-dried at 65 $^\circ$C for 48 h, and weighed to estimate FRB (Persson, 1983; Pregitzer, 2002; Feng et al., 2018).

The vertical distribution of fine roots was quantified using a coefficient (β) based on the asymptotic single-parameter global model (Gale and Grigal, 1987):

$$Y = 1 - \beta^d$$ \hspace{1cm} (1)

where Y is the cumulative root fraction, calculated as the proportion of FRB from the soil surface to any depth (e.g. 0–20, 0–50 cm) to total FRB (0–100 cm), d is the soil depth (cm), and β is the fitted coefficient of rooting distribution. Higher β values indicate a greater proportion of fine root biomass near the soil surface. We used nonlinear regression to fit the parameter β_i and used the coefficient of determination (r^2) to evaluate the fit.

2.5. Statistical analyses

Prior to testing trial responses, we used the Shapiro-Wilk statistic to test for data normality and the Levene’s test for homogeneity of variance. For data that do not conform to the normality hypothesis based on the Shapiro-Wilk test, in order to reduce the violation of the normality hypothesis and improve the coefficient estimation of small samples, we bootstrapped the fitted coefficients of all models by 1000 iterations using the boot package.

Because we measured FRB in plots repeatedly among sampling times and sampled roots in layers within each plot, we used a linear mixed-effect model to test the effects of N addition, sampling times (T), and soil depth (D) using formula:

$$Y_{ijkl} = N_i + T_{(j)} + D_{(k)} + N_i \times D_{(k)} + N_i \times T_{(j)} + T_{(j)} \times D_{(k)} + N_i \times T_{(j)} \times D_{(k)} + e_i$$ \hspace{1cm} (2)

where Y_{ijkl} is the FRB, β values, soil environment or soil properties, N_i ($i = 1, 2, \ldots, 5$) is the N addition rates, $T_{(j)}$ ($j = 1, 2, \ldots, 4$) is the sampling times (June and November in 2017 and 2018), $D_{(k)}$ ($k = 1, 2, \ldots, 10$) is the soil depth as a factor variable (0–10, 10–20, \ldots, 90–100 cm), and e_i is the random plot effect ($i = 1, 2, \ldots, 4$). To test the effects of N addition and sampling time on root vertical distribution (parameter β) and soil environment (including ST and SWC), the term “D” in Eq. (2) was excluded. Similarly, in order to test the effects of N addition and soil layer on soil properties, including soil AN, AP, N: P and pH, the term “T” in Eq. (2) was not included. To compliment Eq. (2), where N was treated as a categorical variable, we also analyzed our data by treating N as a continuous variable. Both analyses were qualitatively similar (Figs. S1 and S2). We performed the linear mixed effect analysis using restricted maximum likelihood estimation within the lme4 module.

Structural equation modeling (SEM) was conducted to determine the effects (direct and indirect) of the soil environment (including ST and SWC), soil pH and soil nutrients (including AN, AP and N: P) on the responses of FRB and β values to N addition. Based on previous knowledge and our results from statistical analysis and linear regression, we proposed a priori model of hypothesized relationships within a path diagram, allowing a causal interpretation of the model outputs. Path coefficients were obtained using the maximum likelihood estimation technique. The Chi-square (χ^2) test was used to evaluate overall goodness of fit for this model. A non-significant χ^2 test ($p > 0.05$) and a root mean square error of approximation (RMSE) < 0.05 indicate the model is acceptable. Additionally, due to strong correlations between the soil factors, we conducted a principal component analysis (PCA) to create a multivariate functional index before building the SEM. The first

![Fig. 1.](image_url) Seasonal variation of air temperature and precipitation (a), soil temperature (b) and moisture (c) across N addition treatments.
principal component (PC1) explained 60.0% and 73.9% of the total variance for soil environment and nutrients, respectively. All figures were prepared using Sigma plot 10.0 (Systat Software, San Jose, CA) and all statistical analyses were performed using R 3.5.1 (http://cran.r-project.org). All the SEM analyses were conducted using AMOS 22.0 (Amos Development Corporation, Chicago, IL, USA).

3. Results

3.1. Microclimate, DBH, soil properties, plant C and N

Air temperature, precipitation, soil temperature and moisture across treatments showed clear seasonal dynamics (Fig. 1). Mean annual air temperature was 16.38 °C in 2017 and 15.96 °C in 2018 (Fig. 1a). Mean annual precipitation was 980 and 1177 mm in 2017 and 2018, respectively (Fig. 1a). ST increased from January to August and then decreased from August to December in 2017 and 2018 (Fig. 1b). SWC was the lowest in June 2017 and October 2018 (Fig. 1c). We found that neither N addition nor the interactions of N addition and sampling time had a significant effect on ST and SWC (all \(p > 0.05 \), Table 1). N addition and sampling time both significantly increased DBH (all \(p < 0.01 \), Table S3a), but the interactions between N addition and sampling time had no significant effects on DBH (all \(p > 0.05 \), Fig. S3a). In addition, we found that C concentration in green leaves increased significantly, while that in fine roots decreased with increasing N addition rates (all \(p < 0.05 \), Table 1). N addition increased soil AN, AP and N: P and decreased pH (all \(p < 0.05 \), Table 1, Fig. S4). With increasing soil depth, soil AN and AP decreased while pH increased (all \(p < 0.05 \), Table 1, Fig. S4). The interactive effects of N addition and soil depth had a significant effect on soil AN and AP (all \(p < 0.001 \), Table 1, Fig. S4), but not on N: P ratio and pH (all \(p > 0.05 \), Table 1, Fig. S4).

3.2. Effects of N addition on FRB and its vertical distribution

N addition significantly decreased FRB (all \(p < 0.01 \), Table 1, Fig. 2). Compared with N0, for example, N1, N2, N3, N4 decreased FRB by 7.7, 14.9, 26.9 and 39.4% in June 2017, respectively. Along the soil profile, both FRB and its proportional distribution to total FRB were consistently affected by N addition, soil depth, and interactions with N addition and soil depth and with soil depth and sampling time (all \(p < 0.01 \), Table 1). However, sampling time, its interaction with N addition, and the interaction of N addition, soil depth, and sampling time had no significant effect on FRB (all \(p > 0.05 \), Table1). With increasing N addition rates, FRB in the surface soil layer (0–20 cm) decreased whereas FRB in deep soil layer (20–100 cm) increased (all \(p < 0.01 \), Table 1, Fig. 3). In June 2017, FRB in the deep soil layer was much higher than that at the other three sampling times (all \(p < 0.01 \), Table 1, Fig. S5). We found that \(\beta \) increased significantly with increasing N addition rates and was much higher in June 2017 than at the other three sampling times (all \(p < 0.01 \), Table 1, Fig. 4).

3.3. Relationships of FRB and \(\beta \) with microclimate and soil properties

We found FRB in the poplar plantation was regulated negatively by the mix of soil nutrients represented by PC1 (all \(p < 0.001 \), Fig. 5a) and positively by soil pH (all \(p < 0.001 \), Fig. 5c), but had no significant correlation with PC1 of the soil environment parameters (all \(p > 0.05 \), Fig. 5b). \(\beta \) was correlated positively with PC1 of the soil nutrients (all \(p < 0.001 \), Fig. 5d) and negatively with PC1 of the soil environment (all \(p < 0.05 \), Fig. 5e) and soil pH (all \(p < 0.05 \), Fig. 5f). SEM analyses showed that FRB was largely determined by soil available nutrients and \(\beta \) was predominantly regulated by soil available nutrients and soil environment (Fig. 6).

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>FRB (g/m²)</th>
<th>Soil AN (mg/kg)</th>
<th>Soil AP (mg/kg)</th>
<th>N: P ratio</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>4.04±0.04</td>
<td>183.94±9.03</td>
<td>36.06±1.62</td>
<td>0.49±0.00</td>
<td>2.59±0.06</td>
</tr>
<tr>
<td>N1</td>
<td>4.05±0.04</td>
<td>183.94±9.03</td>
<td>36.06±1.62</td>
<td>0.49±0.00</td>
<td>2.59±0.06</td>
</tr>
<tr>
<td>N2</td>
<td>4.06±0.04</td>
<td>183.94±9.03</td>
<td>36.06±1.62</td>
<td>0.49±0.00</td>
<td>2.59±0.06</td>
</tr>
<tr>
<td>N3</td>
<td>4.07±0.04</td>
<td>183.94±9.03</td>
<td>36.06±1.62</td>
<td>0.49±0.00</td>
<td>2.59±0.06</td>
</tr>
<tr>
<td>N4</td>
<td>4.08±0.04</td>
<td>183.94±9.03</td>
<td>36.06±1.62</td>
<td>0.49±0.00</td>
<td>2.59±0.06</td>
</tr>
</tbody>
</table>

Note: All values are mean±standard error.
4. Discussion

4.1. Effects of N addition on FRB

Fine roots are usually sensitive to N addition (King et al., 2002; Yuan and Chen, 2015). In line with many previous findings (Yan et al., 2017; Wang et al., 2019), our results showed that N addition, in general, decreased FRB in poplar plantation. Plants can improve the efficiency of resource acquisition by increasing the growth of fine roots in the absence of soil nutrients (Iversen, 2010; Wang et al., 2013). Therefore, when the availability of soil nutrients is improved (e.g., increased AN (0–100 cm) and AP (0–20 cm) \(p < 0.01 \), Table 1, Fig. S2 a and b) at our study site, plants need fewer roots and less active root area to meet nutrient demands (Helmisaari et al., 2007). This can be also explained in terms of cost-benefit theory, which suggests that plants would invest less C in fine roots and can maximize nutrient uptake when soil nutrients are rich (Eissenstat and Yanai, 1997; Peng et al., 2017).

Indirectly, N addition may have induced changes in soil nutrient availability that altered plant physiological processes and C allocation patterns. Optimal C allocation theory indicates that if N is abundant in soil, plants would reduce their C investment in roots (Chapin et al., 1987; Eissenstat and Yanai, 1997). The theoretical foundation of optimal C allocation theory is that soil is limited by N (Kobe et al., 2010; Peng et al., 2017). This is the case in the saline-alkali soils of coastal eastern China that are usually limited by N (Xia et al., 2019). Moreover, our finding that N addition increased poplar leaf C content and DBH while decreased root C content are in accordance with the theory, which partly explained the observed decreases in FRB.

4.2. N addition effects on FRB vertical distribution

Quantifying the vertical distribution of FRB is essential to understand below-ground ecological processes such as water and nutrient uptake of roots (Xu et al., 2014; Zhang et al., 2019). Our results showed that poplar FRB decreased significantly with increasing soil depth across treatments, which agrees with many previous findings (e.g., Arndal et al., 2018; Zhang et al., 2019; Houde et al., 2020). The decrease in FRB may relate to the sharp decrease in soil nutrients with increasing soil depth, one of the dominant controlling factors of vertical root distribution (all \(p < 0.05 \), Table 1, Fig. S4). Interestingly, we found FRB decreased in surface (0–20 cm) versus deep (20–100 cm) soil layers under N addition. Similarly, Yan et al. (2017) reported that N addition significantly reduced FRB in the 0–20 cm soil layer and increased in the 20–40 cm soil layer. Modeling studies also indicate that N addition allows fine roots to spread more widely into deep soil layers (Iversen, 2010). N addition may alleviate N limitation through the whole soil profile, but other nutrients, such as soil P, may respond inconsistently to N addition among soil layers (Gress et al., 2007; Li et al., 2016). We found that N addition increased P availability in the surface soil layer, but had little effect on P in the deep soil layer (\(p < 0.01 \), Table 1, Fig. S4b). Therefore, investing in fine roots in the surface soil is less beneficial for plants when the nutrient limitation of the surface soil is alleviated with N addition (Jackson et al., 1996; Van Wijk, 2011), leading to lower FRB in the surface soil layer. In contrast, increased N availability in the deep soil layer caused P limitation, which stimulated root growth to absorb more P.

By fitting models, we found N addition significantly increased the vertical distribution parameter \(\beta \), indicating that N addition promoted the distribution of fine roots to deeper soil layers. This new distribution pattern may be the biological result of plants’ adaptation to changes in...
Fig. 3. Effects of N addition on the vertical distribution of fine root biomass along the soil profile from 2017 to 2018. (a): June 2017; (b): November 2017; (c): June 2018; (d): November 2018. FRB% represents the percentage of root biomass of a specific soil layer (e.g. 0–10 cm) to the total fine root biomass (0–100 cm).
the external environment. It has been reported that N leaching occurs along the soil profile under N addition (e.g., Panagopoulos et al., 2007; Turner and Henry, 2010; Crowley and Lovett, 2017), indicating the transfer of N to deep soil layers, which nevertheless remain N-limited (Weintraub et al., 2017). According to the optimal allocation principle, this suggests that C is allocated to the deep root system to maximize N absorption (Chapin et al., 1987; Eisenstat and Yanai, 1997). In addition, studies at the same site found N addition decreased turnover with few impacts on fine root production in deep soil layers. These findings indicate that roots could continue to grow as long as the benefits of nutrient acquisition exceeded the C value of surviving roots (Burton et al., 2000; Peng et al., 2017), leading to increased FRB in deep soil layers. Overall, different responses of fine root growth at different soil depths to N addition indicate that FRB as well as its vertical distribution is sensitive to N addition and trees can optimize nutrient uptake by redistributing their roots vertically under different nutrient

Fig. 4. Cumulative root biomass fraction along the soil profile (a-d) and variation in root vertical distribution parameter (β) (e-h) across N addition treatments. (a, e): June 2017; (b, f): November 2017; (c, g): June 2018; (d, h): November 2018. Lowercase letters indicate significant differences at $p = 0.05$ among different N addition treatments.
In addition, we found that β in June 2017 was higher than that in the other three sampling times, which may be caused by lower soil water content. Studies have shown that plant roots often extend into deep soil layers to achieve water resources in arid and semiarid, tropical, and subtropical ecosystems (Brando et al., 2008). Similarly, our results demonstrated that deep fine roots can be of pivotal importance to alleviate water stress in temperate environments. Moreover, deep fine roots associated with the advantage of lower maintenance costs to offset the higher construction costs, can absorb more water compared with surface fine roots (Joslin et al., 2006; Germon et al., 2016). Thus, plant developed new fine roots in the vertical direction especially in deep soil layers, which would be considered as an effective solution in coping with drought stress.

4.3. Regulation of FRB and its vertical distribution

We found that soil pH positively regulated FRB across N treatments.
Low soil pH may inhibit root growth by increasing aluminum and iron plasma concentrations (Bai et al., 2015; Yan et al., 2017). However, consistent with previous findings (Wang et al., 2019), our results showed that FRB dynamics in poplar plantations with N addition was dominantly regulated by soil available nutrients. Soil available nutrients are considered to be one of the most frequent controlling factors on plant root productivity (Peng et al., 2017; Ding et al., 2020). The regulation of FRB by soil available nutrients aligns with the optimal allocation theory and cost-benefit relationship, which indicates that trees trade-off nutrient uptake and C investment for root production and maintenance (Bakker et al., 2006). Additionally, recent studies have shown that soil nutrient availability drives the root economics spectrum. This is usually represented by the negative relationship between root N, P concentration and root tissue density, describing the trade-off between conservation and acquisition in root resource uptake (Ostonen et al., 2017; Ding et al., 2020). In conclusion, the change of soil available nutrients may alter the C allocation pattern and the physiological functions of fine roots, and further affect FRB, which is an effective strategy for trees to adapt to different habitat conditions. Soil available nutrients not only controlled FRB in poplar plantations but also regulated the vertical distribution of the root system. Our SEM results showed that there were two important pathways through which the vertical distribution of fine roots was mediated. First, the soil environment negatively regulated β. Studies have shown that increases in surface soil temperature usually make fine roots distribute deeper (Li et al., 2017; Zhang et al., 2019; Courchesne et al., 2020). Additionally, soil moisture strongly determines the root distribution in terrestrial ecosystems, which may be due to N addition induced increases in transpiration reduce surface soil water use efficiency (Huang et al., 2016; Lu et al., 2018). Second, soil available nutrients positively regulated β. Consistent with the results of a recent study that the expansion of deep roots is closely related to nutrient availability (Newman et al., 2020). The regulation of soil available nutrients in β also agreed with the cost-benefit relationship (Iversen, 2010). C gains may shift the cost-benefit balance in favor of root production in deeper soil layers and the benefits of smaller resource gains may have previously been outweighed by C costs (Iversen, 2010). Intense competition with surface microbes in addition to intra- and interspecific interactions with roots from neighboring plants can further increase the value of deep root penetration and increase the microbial immobilization of available nutrients (Fierer et al., 2003; Li et al., 2014). Our results may provide a scientific basis for the management of soil environment and nutrients of the plantation ecosystems.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the many lab members for their help with field and lab work. This study was financially supported by the “5151 Talent Program of Nanjing Forestry University, the Natural Science Key Fund for Colleges and Universities of Jiangsu Province of China (17KJA180006), the Six Talent Peaks Program of Jiangsu Province (JY-041 & TD-YXDDX-006), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Doctorate Fellowship Foundation of Nanjing Forestry University, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province.

Author contributions: All authors contributed intellectual input and assistance to this study and manuscript preparation. X.X. conceived the idea and designed the study. Q. G. collected and analyzed the data with help from X.X. Q. G. and X.X. wrote the paper with input from all authors.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.foreco.2021.119152.

References

