Dryness controls temperature-optimized gross primary productivity across vegetation types

Bingxue Wang a,1, Weinan Chen a,b,1, Junhu Dai b,c,d, Zhaolei Li a, Zheng Fu e, Sangeeta Sarmah a, Yiqi Luo f, Shuli Niu a,b,*

a Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
b College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
c Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
d China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad 45320, Pakistan
e Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette 91191, France
f Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA

A R T I C L E I N F O

Keywords:
Gross primary productivity
Dryness index
Dryness conditions
Energy-limitation
Soil moisture

A B S T R A C T

Temperature response of gross primary productivity (GPP) is a well-known property of ecosystem, but GPP at the optimum temperature (GPP T opt) has not been fully discussed. Our understanding of how GPP T opt responds to warming and water availability is highly limited. In this study, we analyzed data at 326 globally distributed eddy covariance sites (79°N-37°S), to identify controlling factors of GPP T opt . Although GPP T opt was significantly influenced by soil moisture, global solar radiation, mean annual temperature, and vapor pressure deficit in a non-linear pattern (R 2 = 0.47), the direction and magnitude of these climate variables’ effects on GPP T opt depend on the dryness index (DI), a ratio of potential evapotranspiration to precipitation. The spatial pattern showed that soil moisture did not affect GPP T opt across energy-limited sites with DI < 1 while dominated GPP T opt across water-limited sites with DI > 1. The temporal pattern showed that GPP T opt was lowered by warming or low precipitation in water-limited sites while energy-limited sites tended to maintain a stable GPP T opt regardless of changes in air temperature. Vegetation types in humid climates tended to have higher GPP T opt and were more likely to benefit from a warmer climate since it was not restricted by water conditions. This study highlights that the response of GPP T opt to global warming depends on the dryness conditions, which explains the nonlinear control of water and temperature over GPP T opt . Our finding is essential to realistic prediction of terrestrial carbon uptake under future climate and vegetation conditions.

1. Introduction

Gross primary productivity (GPP) is the most important component of the terrestrial carbon cycle and its great variability can lead to large uncertainty in modeled dynamics of terrestrial carbon sequestration (Beer et al., 2010; Friedlingstein et al., 2020). Global warming profoundly affects GPP. Theoretically, ecosystem GPP increases with ambient temperature till the temperature reaches an optimum temperature (T opt) corresponding with peaked GPP (GPP T opt), above which GPP declines sharply (Huang et al., 2019; Kumarathunge et al., 2019). T opt and GPP T opt are the two most critical parameters in the temperature response of GPP. Thus, the adjustment of the two key properties to a warmer climate determines the magnitude of future carbon uptake (Way and Yamori, 2014). However, most previous studies on thermal acclimation and adaptation of ecosystem-scale photosynthesis focused on T opt (Kumarathunge et al., 2019; Sendall et al., 2015), less on GPP T opt . It has been well documented that the inter-annual variability of GPP is determined by peak GPP more than any other drivers (Musavi et al., 2017; Xia et al., 2015; Zhou et al., 2016). Therefore, revealing the key climate variables of maximum photosynthetic capacities contributes to more accurate prediction of GPP and the carbon cycle-climate feedbacks (Gu et al., 2009; Yi et al., 2012).

* Corresponding author at: Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China.

E-mail address: sniu@igsnrr.ac.cn (S. Niu).

These authors contributed equally to this work.

https://doi.org/10.1016/j.agrformet.2022.109073

Received 20 March 2022; Received in revised form 23 June 2022; Accepted 28 June 2022

Available online 2 July 2022

0168-1923/© 2022 Elsevier B.V. All rights reserved.
A recent leaf-level study claimed that the maximum photosynthetic capacity, represented by the maximum rates of Rubisco carboxylation (V\textsubscript{\text{cmax}}), is optimized to the climate variables including light, temperature, vapor pressure and atmosphere pressure across the globe (Smith et al., 2019). Since the mechanisms and parameters of the photosynthesis-temperature response differs under different biological hierarchical levels, knowledge of leaf-level photosynthetic capacity is not necessarily applicable for understanding the controlling factors of GPP and its peak rate (GPP\textsubscript{\text{opt}}) at the ecosystem scale (Huang et al., 2019; Smith et al., 2019). Although Huang et al. investigated the determinant of the temporal variation in GPP\textsubscript{\text{opt}} globally (Huang et al., 2018), the major climate variables of the spatial variation of GPP\textsubscript{\text{opt}} is still unknown.

Warming stimulates leaf-level photosynthesis at high soil moisture but reduces it under dry spells (Humphrey et al., 2018; Reich et al., 2018; Smith and Dukes, 2018), thus it is reasonable to hypothesize that water availability also influences the response of GPP\textsubscript{\text{opt}} to temperature. Previous studies have found that the inter-annual variation of terrestrial carbon uptake and atmospheric CO\textsubscript{2} growth rate is strongly correlated to the terrestrial water storage, indicating a close interplay between carbon and hydrological cycles (Humphrey et al., 2018). However, it is still unknown how the responses of GPP\textsubscript{\text{opt}} to different climate variables varied with dryness conditions.

Carbon and water cycles in the terrestrial ecosystems are closely coupled. It is well-described by Budyko’s curve through incorporating the concept of water and energy limits that evapotranspiration was mainly controlled by the balance between potential evapotranspiration and precipitation (i.e. the dryness index, DI) (Budyko et al., 1974; Potter and Zhang, 2009; Yi and Jackson, 2021) (Fig. 1). When DI < 1, evapotranspiration is limited by available energy; when DI > 1, evapotranspiration is limited by available water (Fig. 1). Given the close relationship between GPP and evapotranspiration (Beer et al., 2009; Yu et al., 2008), the concept of water and energy limits possibly applies to the determinant climate variables of GPP\textsubscript{\text{opt}} as well. Additionally, different vegetation types vary in climatic preference (Lin et al., 2015; Wang et al., 2017; Whittaker, 1975). Cropland, grassland and forest naturally differ in V\textsubscript{\text{cmax}} and peak vegetation growth (Huang et al., 2018). None has ever studied the variation of GPP\textsubscript{\text{opt}} among vegetation types and teases apart the effects of vegetation types and different climate variables.

Using data from 326 FLUXNET eddy covariance sites across large geographical gradients from 37°S to 79°N, we explore the major climate variables of GPP\textsubscript{\text{opt}} across space. Extensive ecological researches have demonstrated that control of water over carbon process is nonlinear (Huxman et al., 2004; Luo et al., 2017) across large geographic areas while within a site carbon processes usually respond linearly to available water (Luo et al., 2017). We hypothesize that GPP\textsubscript{\text{opt}} responds to water availability and other environmental drivers non-linearly across the 326 sites (H1). The response of GPP\textsubscript{\text{opt}} to different climate variables depends on dryness conditions, i.e., water availability determines GPP\textsubscript{\text{opt}} in water-limited ecosystems while temperature boosts GPP\textsubscript{\text{opt}} in energy-limited ecosystems (H2). We also hypothesize that GPP\textsubscript{\text{opt}} respond to climate variables differently among vegetation types (H3).

2. Material and methods

2.1. Site information and climate data

We obtained daily mean GPP and air temperature from standardized files of the LaThuile and FLUXNET2015 databases. The data were quality-controlled and gap-filled by consistent methods as described in previous reports (Chu et al., 2017; Niu et al., 2012). Data with remained gaps less than 5% in a whole year were selected for further analysis, leaving a total of 326 sites with 1634 site-years data spanning from 37°S to 79°N (Fig. S1). Daily mean GPP and air temperature (T\textsubscript{\text{air}}) instead of hourly data was used to generate GPP\textsubscript{T\text{opt}} response curve, avoiding the influence from the diurnal pattern. Specifically, for each site-year, the daily air temperatures were binned in 1 °C. The daily air temperature and the corresponding GPP in each temperature bin was averaged to construct the GPP-T\textsubscript{\text{air}} response curve. The peaked GPP (GPP\textsubscript{\text{T\text{opt}}}) was determined by calculating the running mean of every three temperature bins.

Mean annual temperature (MAT, °C), mean annual precipitation (MAP, mm yr-1), growing season temperature (GST, °C), growing season precipitation (GSP, mm yr-1), global solar radiation (GSR, MJ m-2 d-1) and growing season vapor pressure deficit (VPD, kPa) of each site were obtained from World Clim (Fick and Hijmans, 2017), which are the average for the years 1970–2000. The warmest quarter in a year is considered as the growing season. Humidity index was obtained from FAO dataset (Food and Agriculture Organization of the United Nations, 2015), which is calculated the ratio of precipitation to potential evapotranspiration (P/PET). The reciprocal of humidity index is dryness index (DI, PET/P). Soil moisture (mm) is obtained from CPC soil moisture data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/. These data were used to investigate the spatial variation in GPP\textsubscript{\text{T\text{opt}}}.

Vegetative patterns of the sites used in this study were divided into 13 vegetation types according to the International Geosphere-Biosphere Programme (IGBP) (Peel et al., 2007): deciduous broadleaf forest (DBF, n = 42), evergreen broadleaf forest (EBF, n = 26), evergreen needle leaf forest (ENF, n = 77), deciduous needle-leaf forest (DNF, n = 1), mixed forest (MF), closed shrubland (CSH), open shrubland (OSH), grassland (GRA, n = 61), cropland (CRO, n = 34), savannah (SAV, n = 12), woody savannah (WSA, n = 6), and wetland (WET, n = 32). For the statistical analysis, closed shrubland (CSH, n = 8), open shrubland (OSH, n = 14) are merged to shrubland (SH). Savannah (SAV) and woody savannah (WSA) were merged into savannah (SAV). The global vegetation distribution was derived from MODIS (MOD12Q1 Land Cover Science Data Product) at a spatial resolution of 1 km using the classification scheme of IGBP.

2.2. Statistical analysis

GPP\textsubscript{\text{T\text{opt}}} of each site was averaged across multiple years of data. The response of GPP\textsubscript{\text{T\text{opt}}} to climate variables was examined by ridge regression in order to control the collinearity of climate variables across space. GPP\textsubscript{\text{T\text{opt}}} was logarithm transformed to meet the assumption of homogeneity of variance. We further estimated the relative contributions of climate variables by traditional R square partitioning of

![Fig. 1. A Budyko curve (revised from Yi and Jackson, 2021). When PET < P, evapotranspiration is limited by available energy; when PET > P, evapotranspiration is limited by available water. Here, EI = ET/P, DI = PET/P, where ET is evapotranspiration, PET is potential evapotranspiration, P is precipitation.](image-url)
multivariate regression and gradient boost regression (machine learning) using “hier.part” and “gbm” packages, respectively.

The relationship between each climate variable and GPP_T\textsubscript{opt} was examined by polynomial regression and localized polynomial regression (LOESS). We found that GPP_T\textsubscript{opt}-water availability response function is nonlinear saturating and GPP_T\textsubscript{opt}-energy response function is concave down. We estimated the saturation point of water availability and turning points of energy using breaking point analysis with R package “segmented”.

We analyzed the interaction between climate variables and DI as well as vegetation types by analysis of variances (ANOVA). Rolling window analysis was applied to climate variables to investigate the effects of DI on the partial slope of GPP_T\textsubscript{opt} to climate variables with window size of 90 sites. We first sorted the 326 sites by DI. Then the mean DI was calculated for every neighboring 90 sites and a multivariate regression was performed within each group with GPP_T\textsubscript{opt} as response variable and SM, VPD, MAT and GSR as explanatory variables. By testing with different sites of moving window, the 90 sites moving-window allowed a sufficient sample size and most robust goodness of fit for the regression analysis although the results were similar among different sites of moving windows. Based on previous analysis that groups the 326 sites by DI, within each DI group, the function between climate variables and GPP_T\textsubscript{opt} is linear except for GSR. Thus we used the following function in each 90 neighboring sites.

\[
GPP_{T_{opt}} = f(SM, VPD, MAT, GSR, GSR^2, GSR^3)
\]

The responses of GPP_T\textsubscript{opt} to each climate variable were considered as the effect of each climate variable with other climate variables controlled. Then we plotted the partial coefficients derived from this function against the average DI of the corresponding sites. R package “zoo” was used to perform the rolling window analysis.

Then we tested the effects of vegetation types on GPP_T\textsubscript{opt} using the function below:

\[
GPP_{T_{opt}} = f((SM, SM^2, VPD, MAT, GSR, GSR^2, GSR^3)vegetation types)
\]

This function was then used to predict the global distribution of current GPP_T\textsubscript{opt}.

The average MAT, SM, VPD, GSR and DI were estimated for each vegetation type to evaluate the climate preference (Yi and Jackson, 2021). The sensitivities of GPP_T\textsubscript{opt} to SM (SM\textsubscript{sen}) and MAT (MAT\textsubscript{sen}) were estimated for each vegetation types. The normalized GPP_T\textsubscript{opt} of each vegetation type is calculated by setting climate variables at the average level (SM=345mm, VPD=0.78 kPa, MAT=9.6 °C, GSR=13.4 MJ m-2 d-1). Principle component analysis (PCA) was used to investigate the relation between climate preference and the sensitivity of GPP_T\textsubscript{opt} to climate variables as well as normalized GPP_T\textsubscript{opt} among vegetation types.

The temporal variation of GPP_T\textsubscript{opt} in response to MAT and MAP was investigated using linear mixed-effect model with R package “nlme”. Site was treated as random effect, allowing both slope and intercept of regression to vary between sites. Sites that have more than five years’ data were used in the analysis (Fig. S2). We divided sites into water-limited (red) and energy-limited (blue) by DI. Note that neither energy nor water availability explained GPP_T\textsubscript{opt} well when the dryness index was between 0.77 and 1.06 (Fig. S3) and it is difficult to define whether these sites are water-limited or energy-limited. Thus sites with dryness index between 0.77 and 1.06 were excluded from the analysis to avoid confusion (Fig. S3). We end up with 33 sites and 385 site-year data for energy-limited sites, 27 site and 252 site-year data for water-limited sites.

All statistical analyses were performed using R x64 3.3.1 for Windows at α level=0.05. Graphs were constructed using package “ggplot2”.

3. Results and discussions

3.1. Nonlinear control of climate variables over GPP_T\textsubscript{opt}

Soil moisture (SM), global solar radiation (GSR), mean annual temperature (MAT) and air vapor pressure deficit (VPD) explained 47% of the spatial variation in GPP_T\textsubscript{opt} (Fig. 2, Table S1). Our ridge regression analysis suggested that mean annual precipitation (MAP), growing season precipitation (GSP) and dryness index (DI) are lurking variables for GPP_T\textsubscript{opt} (Table S1). Soil moisture was the most important climate variable for controlling GPP_T\textsubscript{opt}, explaining 36% of the spatial variation by itself (Figs. 2a and S4, Table S2). GPP_T\textsubscript{opt} linearly increased with soil moisture but plateaued when soil moisture is larger than 353 ± 39 mm and maintained a constant GPP_T\textsubscript{opt} at the rate of 8 g C m-2 d-1 (Fig. 2a).

GPP_T\textsubscript{opt}-precipitation function showed a similar non-linear saturation pattern and the saturation points for growing season precipitation and mean annual precipitation were 306 ± 39 and 804 ± 55 mm, respectively (Table S2). Similar relationship is observed between aboveground net primary productivity and precipitation across large spatial scales (Luo et al., 2017).

Temperature and global solar radiation (GSR) represent thermal and light energy respectively. Vapor pressure deficit (VPD) is a combined effect of thermal energy and water. GPP_T\textsubscript{opt}-energy response curves were nonlinear concave down across space. The turning points of GSR, MAT, and VPD were 13.5 MJ m-2 d-1, 8.5 °C and 0.8 kPa, respectively (Fig. 2b-d, Table S2). These turning points of energy delineate a low-energy range over which GPP_T\textsubscript{opt} increased with increasing energy and a high-energy range over which GPP_T\textsubscript{opt} decreased with excess energy. V\textsubscript{max} is modeled to linearly increase with light, which explains overestimated photosynthetic capacity in wet, tropical forest since a linear function fails to capture the suppression of photosynthetic capacity at high light levels (Smith et al., 2019). During the periods of global dimming, plants photosynthesized more efficiently and sequestered more carbon (Wild, 2009), agreeing with our results since most sites locate in a radiation range that further increase in GSR suppresses GPP_T\textsubscript{opt} (Fig. 2b).

3.2. The effects of climate variables depend on the dryness condition

The existence of the thresholds of soil moisture indicates a transition from water-controlled stage to energy-controlled stage for GPP_T\textsubscript{opt}. Therefore, the effects of soil moisture, light, temperature and air dryness depended on dryness conditions, as indicated by the significant interaction between these climate variables and DI (Table 1). We divided sites into energy-limited group and water-limited group (Fig. 3) based on the balance between water demand (PET, potential evapotranspiration) and water supply (P, precipitation), using the same concept of Budyko’s curve (Budyko, 1961; Budyko et al., 1974) that well-describes evapotranspiration.

The response function of GPP_T\textsubscript{opt} to soil moisture, air temperature and vapor pressure deficit became linear within water- and energy-limited group (Table 2). Thus, we were able to extract the partial linear slope of GPP_T\textsubscript{opt} to soil moisture, air dryness and mean annual temperature along the dryness gradients using moving window analysis. Variations caused by solar radiation were represented by a third-degree polynomial function since GPP_T\textsubscript{opt}-GSR response curve is still non-linear within water-limited and energy-limited groups (Table 2).

GPP_T\textsubscript{opt} linearly increased with soil moisture (P = 0.002, Table 2) and became increasingly more sensitive to soil moisture along the dryness gradients (Fig. 3a). However, the sensitivity to water peaked when dryness index was around 2.1–2.4 and decreased with further increase in aridity. Vegetation types that occur in extremely arid region have relatively low productivity and highly adapted mechanisms to cope with extreme drought compared with semiarid regions, causing the reduced sensitivity of GPP_T\textsubscript{opt} to soil moisture when dryness index was larger than 2.4 (Liu et al., 2018, 2020). GPP_T\textsubscript{opt} linearly increased with soil
moisture across water-limited sites and did not affect GPP_{Topt} across energy-limited sites (Table 2, Fig. 3a). Consequently, a nonlinear saturation function was observed between GPP_{Topt} and soil moisture across the 326 sites, supporting the double asymmetric model of the controlling of water availability over carbon cycles (Knapp et al., 2017). The linear increase in GPP_{Topt} with soil moisture across water-limited sites is consistent with the linear increment of carbon process with water availability in grassland that often occurs in water-limited habitat (Zhou et al., 2009). V_{max} model excludes the influence of soil moisture or precipitation (Smith et al., 2019) because its parameters are derived from greenhouse studies that did not consider the influences from drought. Thus, the current model might overestimate GPP_{Topt} in water-limited regions. Since soil moisture is the most important climate variable for controlling GPP_{Topt} (Fig. S4), it is imperative to include soil moisture into the model for estimating GPP_{Topt}

High air temperature enhanced GPP_{Topt} (P = 0.012, Table S1, Fig. 3b), similar to the leaf model that V_{cmax} increases with air temperature (Smith et al., 2019). Warming-induced air dryness enhanced GPP_{Topt} in very mesic regions but suppressed GPP_{Topt} in dry regions (Fig. 3c). Air dryness consistently reduced GPP_{Topt} across sites with a dryness index larger than 1.5 (Fig. 3c), which is also defined as dryland by UNESCO (Unesco, 1979). Ecosystem carbon process is generally depressed in water-logged environment (Taylor et al., 2017), explaining air dryness caused stimulation of GPP_{Topt} in mesic areas. GPP_{Topt} is withheld by air dryness in water-limited regions, consistent with a recent study reporting that increased air dryness reduces the global vegetation growth in the new era (Yuan et al., 2019). High temperature induced increase in vapor pressure deficit is also accused for faster mortality of tree seedlings common to the forest–grassland ecotone (Will et al., 2013). However, the leaf-level model assumes an increase of V_{cmax} with VPD throughout the whole range of VPD (Smith et al., 2019). Leaf-level knowledge about photosynthetic capacity is from greenhouse studies that usually do not impose drought stress, which possibly explains the discrepancy between leaf-level and ecosystem-level knowledge. Thus, only the most mesic sites benefit from increasing VPD (Fig. 3c). Direct upscaling of leaf-level knowledge to ecosystem level will overestimate the carbon uptake capacity in water-limited regions. GPP_{Topt} is determined by and increases with water or energy, depending on which one is more limiting. The strong climate control of GPP_{Topt} (R^{2}; 40%–50%, Fig. S3) supports photosynthetic coordination theory that photosynthetic capacities are controlled by climate, instead of soil nitrogen (Prentice et al., 2013; Smith et al., 2019). However, neither energy nor water availability explained GPP_{Topt} well when water-limit and energy-limit reached equilibrium (dryness index between 0.77 and 1.06, Fig. S3). The decoupling of climate variables and GPP_{Topt} was reflected by the oscillation of the slopes when dryness index was around 1 (Fig. 2). Other factors, such as soil nutrients and microbes, possibly come into play when energy-limit and water-limit reach equilibrium.

None of the previous study has ever revealed that the major climate variable for GPP_{Topt} differs between water-limited and energy-limited sites. Therefore, ignoring the effects of dryness causes bias because the estimated parameters would depend on the ratio of water-limited sites to energy-limited sites. In addition, a model generated for the whole globe

Table 1
Analysis of variance of the interaction between climate variables and dryness index. Climate variables: Soil moisture (SM, mm), Global solar radiation (GSR, MJ m^{-2} d^{-1}), Growing season vapor pressure deficit (VPD, kPa), Dryness index (DI, PET/P), Mean annual temperature (MAT, °C), Growing season precipitation (GSP, mm yr^{-1}), Growing season temperature (GST, °C), Mean annual precipitation (MAP, mm yr^{-1}). GPP_{Topt} is log transformed.

<table>
<thead>
<tr>
<th></th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>41.43</td>
<td>41.43</td>
<td>167.17</td>
<td><0.001**</td>
</tr>
<tr>
<td>VPD</td>
<td>5.75</td>
<td>5.75</td>
<td>23.2</td>
<td><0.001**</td>
</tr>
<tr>
<td>MAT</td>
<td>3.37</td>
<td>3.37</td>
<td>13.58</td>
<td><0.001**</td>
</tr>
<tr>
<td>GSP</td>
<td>2.29</td>
<td>2.29</td>
<td>9.23</td>
<td>0.003*</td>
</tr>
<tr>
<td>DI</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.913N.S.</td>
</tr>
<tr>
<td>SM*DI</td>
<td>2.09</td>
<td>2.09</td>
<td>8.42</td>
<td>0.004*</td>
</tr>
<tr>
<td>VPD*DI</td>
<td>0.98</td>
<td>0.98</td>
<td>3.95</td>
<td>0.048</td>
</tr>
<tr>
<td>MAT*DI</td>
<td>5.44</td>
<td>5.44</td>
<td>21.93</td>
<td><0.001**</td>
</tr>
<tr>
<td>GSR*DI</td>
<td>2.31</td>
<td>2.31</td>
<td>9.31</td>
<td>0.002*</td>
</tr>
</tbody>
</table>

Fig. 2. Effects of soil moisture, global solar radiation (GSR), vapor pressure deficit (VPD) and mean annual temperature (MAT) on GPP_{Topt}. GPP_{Topt} (g C m^{-2} d^{-1}) is plotted against soil moisture (SM, mm), global solar radiation (GSR, MJ m^{-2} d^{-1}), vapor pressure deficit (VPD, kPa) and mean annual temperature (MAT, °C). The blue line is the weighted least squares fit determined by a nearest neighbor algorithm (LOESS) and light green shadow represents the 95% confidence interval. The vertical dashed line indicates the turning points of each climate variables and the grey shadow is the 95% confidence interval calculated by segmented regression. The horizontal dashed line indicates the peak GPP_{Topt} at optimum climate conditions.
may work well in mesic region but not in drylands, or vice versa. Grouping sites based on the most limiting factor and applying different algorithms more realistically represents the nature process, as a result, improving the accuracy of ESMs’ projection of carbon influx in the future.

3.3. Temporal variation in GPP_T\textsubscript{opt} as influenced by water- and energy-limitation

Dryness affects the temporal variation in GPP_T\textsubscript{opt} in response to mean annual temperature (MAT) and mean annual precipitation (MAP). Inter-annual change in MAT does not affect the temporal variation in GPP_T\textsubscript{opt} in energy-limited sites yet reduces GPP_T\textsubscript{opt} by 0.17 g C m-2 d-1 per 1°C increase in MAT (P = 0.01, Fig. 4a, c). GPP_T\textsubscript{opt} tends to be higher in wetter years in both energy- and water-limited sites (Fig. 4b, d). However, water-limited sites are about 1.6 times more sensitive to changes in precipitation than energy-limited sites. Consequently, drought causes greater reduction in carbon uptake in water-limited regions. Given the relationship between carbon uptake and GPP_T\textsubscript{opt}, energy-limited sites are more likely to maintain a stable carbon uptake across years while water-limited sites are more susceptible to warming or drought. This rationale is in agreement with a recent report that water-limited regions are responsible for most of the inter-annual variation (IAV) in atmospheric CO\textsubscript{2} growth rate. The predicted widespread drought by the next century (Girvetz and Zganjar, 2014) will turn many energy-limited ecosystems into water-limited ecosystems, indicating a larger IAV of atmospheric CO\textsubscript{2} growth rate in the future.

3.4. The response of GPP_T\textsubscript{opt} to climate variables also depends on vegetation types

Incorporating vegetation types increased R2 from 47% to 67% (Tables S2 and S3), substantially improving the prediction power of the model. The sensitivity of GPP_T\textsubscript{opt} to MAT and soil moisture varied among vegetation types (Fig. 5). Warming tended to increase GPP_T\textsubscript{opt} in vegetation types that inhabit wetter climate. Vegetation types that inhabit drier climate, such as grassland, are more responsive to changes in soil moisture. We normalized GPP_T\textsubscript{opt} by excluding the influence of climate variables. The normalized GPP_T\textsubscript{opt} still varied among vegetation types (P < 0.001, Table S3), probably due to evolutionary adaptation to local environment (Huang et al., 2018). Shrub and Savanna, which inhabited the most arid niche, showed the lowest GPP_T\textsubscript{opt} even with climate variables adjust to the same value (Fig. 5c). Our finding indicates that when a natural ecosystem degraded to a less productive vegetation type, carbon sequestration is suppressed even if climate conditions go back to the previous conditions. Genetic selection or human management such as irrigation and fertilization possibly explains the higher normalized GPP_T\textsubscript{opt} in cropland (Fig. 5c), agreeing with previous studies that expanding cropland increase in maximum NDVI over time (Huang et al., 2018) and the land-use management in China and India lead the greening of earth (Chen et al., 2019).

3.5. Global distribution of GPP_T\textsubscript{opt}

We predicted current global distribution of GPP_T\textsubscript{opt} based on temperature, light, soil moisture, air dryness and vegetation types (Fig. S5). The global average GPP_T\textsubscript{opt} is 3.6 g C m-2 d-1, with spatial variations that echo the global distribution of GPP perfectly (Beer et al., 2010). Highest GPP_T\textsubscript{opt} occurs along the equator, followed by humid and temperate regions such as the great lake area in the U.S, southeast China.
and Europe (Fig. 6). Water deficiencies constrained GPP_T
opt (Fig. 6) and GPP (Beer et al., 2010) in subtropical region, disagreeing with the leaf-level model that predicts a high V_{cmax} in the same region (Smith et al., 2019). The discrepancies between ecosystem and leaf knowledge contribute to different projections of carbon uptake capacity. The lack of constraining from water contributes to overestimated V_{cmax} in water-limited regions (Smith et al., 2019). We also found GPP_T
opt to be negative related with VPD in water-limited regions while modelled V_{cmax} continuously increases with VPD throughout the whole range (Smith et al., 2019). Furthermore, GPP_T
opt-radiation response curve is non-linear concave down while V_{cmax} is modeled to linearly increase with irradiance (Smith et al., 2019). A better representation of the nonlinear relationship between carbon uptake processes and light helps to reduce the uncertainty in the prediction of carbon fluxes (Nicole and Gordon, 2017).

4. Conclusions

We found a strong regulation of the maximum gross primary productivity (GPP_T
opt) across space by soil moisture, light, temperature, air dryness and vegetation types. Responses of GPP_T
opt to climate variables depend on dryness gradients. GPP_T
opt is limited by temperature under wet condition while GPP_T
opt is limited by water availability under dry condition. The concept of water and energy limits, which originates from researches concerning evapotranspiration, applies to the spatiotemporal variation in GPP_T
opt. Global warming only reduces carbon uptake capacity of water-limited sites due to warming-aggravated water deficiencies and air dryness. Energy-limited ecosystems are able to maintain its carbon uptake capacity or even benefit from warming. The responses of GPP_T
opt to climate variables also depend on vegetation types. GPP_T
opt tends to be higher in vegetation types with humid climates and is more likely to benefit from a warmer climate without water deficit stress. These knowledge does not only improve our understanding of the photosynthetic processes at the ecosystem level, but also aid the modelers to improve the accuracy of coupled climate-carbon cycle process model.

Data accessibility statement

All FLUXNET data can be downloaded at: https://fluxnet.fluxdata.org. Climate variables of each site were obtained from WorldClim (https://www.worldclim.org/). Humidity index was obtained from FAO dataset (https://www.fao.org/home/en/). Soil moisture is obtained from CPC soil moisture data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov. Climate variables of each site were obtained from WorldClim (https://www.worldclim.org/).
Fig. 5. Climatic preference of habitat among vegetation types in relation to the spatial sensitivity of GPP$_{\text{Topt}}$. The sensitivity of GPP$_{\text{Topt}}$ to mean annual temperature (MAT$_{\text{sen}}$) in relation to the climatic preferences of vegetation types (a). The sensitivity of GPP$_{\text{Topt}}$ to soil moisture (SM$_{\text{sen}}$) among vegetation types in relation to the climatic preferences of vegetation types (b). Normalized GPP$_{\text{Topt}}$ in relation to the climatic preferences of vegetation types (c). Principle component analysis (PCA) is used to investigate the relationship between climatic preference of vegetation types and MAT$_{\text{sen}},$ SM$_{\text{sen}},$ and normalized GPP$_{\text{Topt}}.$ Normalized GPP$_{\text{Topt}}$ is calculated by adjust MAT, GSR, SM and VPD to the mean level of the dataset (see material and method). The angle of two arrows indicates the relationship of the two variables.

Fig. 6. Globally predicted present GPP$_{\text{Topt}}.$ GPP$_{\text{Topt}}$ is computed using global solar radiation, mean annual temperature, growing season precipitation, soil moisture and vegetation types as predictors with resolution of 0.1°×0.1°. GPP$_{\text{Topt}}$ is regressed on latitude using generalized additive model (GAM), as shown in the right panel.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work is financially supported by the National Key Technology R & D Program of China (2018YFA060102), National Natural Science Foundation of China (31988102), and the International Collaboration Program of Chinese Academy of Sciences (131A11KYSB20180100) granted to S.N. We used the eddy covariance data of the FLUXNET community by the following networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, Swiss FluxNet and USCCC. The ERA-Interim reanalysis data were provided by ECMWF and processed by Laboratoire des sciences du climat et de l’environnement (LSCE). The FLUXNET eddy covariance data processing and harmonization was carried out by the European Fluxes Database Cluster and the AmeriFlux Management Project (with support by European Union H2020 projects and U.S. Department of Energy Office of Science, respectively), with contributions from the Carbon Dioxide Information Analysis Center, ICOS Ecosystem Thematic Centre, and OzFlux, ChinaFlux, and AsiaFlux offices.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.agrformet.2022.109073.

References

References

