A note before instructions of MIDA across platforms

How MIDA works in different OS system:
Windows:
- Graphic (without install anything)
- Command line (without install anything)

- Graphic (without install anything)
- Command line (without install anything)
Linux:
- Command line (install numpy, pandas, matplotlib packages)
Although all executable MIDA across different OS systems have the same name, they are
different files. For example, users cannot run MIDA .exe (executable MIDA in Windows) in
Mac.

No matter which platform, users need to prepare both model (an executable file) and data
(paramValue.txt, param.csv, config.txt, text files about observations and observation variances,
namelist.txt, printDA.csv, etc.). The instructions from Jon and Yuan well introduce the data to be
prepared for MIDA. The below shows some tips to be taken care of when users prepare a model.

In each iteration, MIDA will write new parameter values to paramValue.txt under the work path
as indicated in namelist.txt. After model simulation, MIDA will read model outputs from text
files in directories indicated in config.txt. Accordingly, users need to make sure that model
executable is able to read parameter values from paramValue.txt and write model outputs to the
files indicated in config.txt. The detailed information is available in step3 of Windows-Graphic
version. In addition, model codes usually use relative directory to read file (e.g., ./paramValue.txt
is relative directory and D:/work/paramValue.txt is absolute directory). Notice, the relative
directory is referred to where MIDA .exe is rather than the directory of model executable.

Taken ./paramValue.txt as an example, the paramValue.txt needs to be in the same folder as
MIDA.

Windows - Graphic version:

1. Make sure model executable is able to work by running it in the windows terminal

EX Command Prompt - O =

C:\Users\Xin>f:

:\>cd F:\Lab\Work\MIDA\Code\MIDAGUI

F:\Lab\Work\MIDA\Code\MIDAGUI>testdalec.exe

F:\Lab\Work\MIDA\Code\MIDAGUI>

If there is no error and the simulation output files are newly generated, users can use the
model executable for MIDA. Otherwise, users may encounter more problems in the
following steps.

2. Double click MIDA .exe to start MIDA. Two windows will generate: one is the main window
and the other is a black terminal. The main window is for users to interact with MIDA and

the terminal window is to show print information. When either of these two windows is

closed, MIDA will exit.

3. When users input in the upper panel to generate namelist.txt, MIDA will check the accuracy

of related data file. Some checking rules are described below.

Il DAmodule - A Generic Module for Data Ascimilation

Help 0 2 ;
Preparation of Data Assimilaﬁon’—"/" \
The number of simulations I I Select Work Path] I Choose A Directory
Lozd Parameter Renge dp— B
mi _ defadt A (Optioral) Load Farameter Covariance
1
2 | o
Load Fies:
3 Load Mode! Executable File
4
5
A v 6 \
| Load Output Configuration File
Observation File List Observation Yariance File List Simulation Cutput Fie List
file name £ fle name £ file name 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
5 v||6 vll6e N
{Optional) Gelman-Rubin convergence test Choose Different Startpaints
0. Save to Namelst Fle \ o
Execution of Data Assimilation o L .
Load Namelist Fil=: [3 \ Choose A File
Chocse variebles to be printin DA: total mlsmatan;& rate [] dalta_mismatch [mismatch for eachcbs [cos var
1, Run Data Assmiation 2. Generate Plots
&

(1) The number of simulations: Check whether the input is a positive number

(2) Load parameter range (e.g., param.csv): (a) Check the whether the csv file is readable; (b)
whether at least one parameter is selected for DA; (c) whether the parameters selected for
DA have reasonable parameter range (min<default<max)

(3) Load model executable: Once loaded, the model executable will run for one time to check
it is workable in the current computer platform. For this purpose, paramValue.txt are

required to be prepared before using MIDA.

(4) Load output configuration (e.g. config.txt): The syntax of config.txt is like below:

1 File directories to match simulation outputs with one observation
2 Mapping operators which is similar to python code

o File directories to match simulation outputs with one observation
< Mapping operators which is similar to python code

File directories to match simulation outputs with one observation
Mapping operators which is similar to python code

Each mapping block involves one line of file directories and several lines of mapping operators.
File directory should start with # (i.e., #obsDir#obsVarDir#CorrespondingSimuOutputs). If there
IS no observation variance, please leave obsVarDir blank but do not forget to add # (i.e, #obsDir#
#CorrespondingSimuQutputs). The mapping operators are similar to Python expressions.
Therefore, the mapping operators support numerical calculations (e.g., +, -, *, /, sum(),
math.pow(),etc.).

In mapping operators, simu_map saves simulation outputs after mapping and the length of
simu_map is same with the observation indicated in the previous line about observation
directory. simuList stores several simulation outputs before mapping and these simulation
outputs are also indicated in the previous line. simuL.ist[0] correspond to the first simulation
output and simuL.ist[0][0:5] indicate the first five elements in the first simulation output. Below
are three ways to map a one-year daily NEE to observed NEE. Notice, for continuous elements
(e.g., [0:365]), the last number is not selected (e.g. [0:365] equals 0, 1, 2, 3, ..., 364). For more

detailed information, please refer to slice in Python program.

1 #F:/Lab/Work/MIDA/obsHEE. txt#F:/Lab/Work/MIDA/obsVarNEE . txt#F: /Lab/Work/MIDA/simuNEE . txt
2 simu map=simulistc[0]

4 #F:/Lab/Work/MIDA/obsHEE. txt#F:/Lab/Work/MIDA/obsVarNEE .. txt#F: /Lab/Work/MIDA/simuNEE . txt
5 Ssimu map[0:365]=simulisc[0] [0:365]

7 #F:/Lab/Work/MIDA/obsMEE.txt#F:/Lab/Work/MIDA/obsVarNEE. txt#F: /Lab/Work/MIDA/ simuMEE . Cxt
H sima map[0]=simulist [0] [0]
simu map[l]=simulisc[0] [1]
10 simn map[2]=simulist[0] [2]

13 simn map[364]=simulist[0] [364]

Below is a complex example of mapping. It is to map four simulation outputs (SimuNEE_Jan.txt,
SimuNEE_Apr.txt, sSimuNEE_Jul.txt, sSimuNEE_Nov.txt) to one observation (obsNEE.ave.txt).
The first line indicates the directories of these files and the observation variance is missing.
Following are three mapping operators. simu_map saves the output values after mapping and it is
to be compared with the observation (i.e., obsNEE_ave.txt). simuList saves all these four
simulation outputs. simuList[0] saves the first output of the four output files (i.e.,
simuNEE_Jan.txt) while simuList[3] saves the last output (i.e., SiImuNEE_Nov.txt). Then
simuList[0][1] corresponds the second element of the first output (i.e, the second element in
simuNEE_Jan.txt). Similarly, simuList[3][1] is the second element in the fourth output file (i.e.,
simu_Nov.txt). Therefore, the first mapping operator is to average the second elements in all four
output files as the first element in simu_map. Similarly, the second mapping operator is to
average the sixth elements in all four outputs and final operator is to average the 11" elements of
all outputs. As a result, simu_map becomes a three-element vector. Later, simu_map will be
compared with observation in MIDA to estimate the discrepancy between observation and

simulation outputs.

5 #F:/obsNEE_ave.txt##F:/simuNEE_Jan.txt,F:/simuNEE_Apr.txt,F:/simuNEE_Jul.txt,F:/simuNEE_Nov.txt
simu map[0]=sum(simulist[0] [1]+simulist[1] [1]+simulist[2] [1]+simulist[3][1])

simn map[l]=sum(simulist[0] [5]+simulist([1l] [3]+simulisc[2] [1]+simulistc[3] [5])
simu_map[2]=sum(simulist[0] [10]+simulist[1] [10]+simulist[2] [10]+simulist[3][10])

The format of config.txt will be checked:
a) Before loading config.txt, user need to select a work path and load model first.
b) The first line cannot be empty
c) The directories of observation and corresponding simulation outputs cannot be empty
d) Different mapping blocks should be separated by an empty line. Two empty lines
indicate the end of config.txt no matter it is the real end or not
e) The length of observation is the same as that of corresponding observation variance
f) MIDA will read all files involved in config.txt to check whether they exist and are
readable text file.
(5) Choose start-point file for G-R convergence test (e.g. startPoints.csv): (a) Check the file
loaded is reasonable csv file; (b) The number of columns need to equal to the number of
parameters selected for DA as indicated in param.csv; (c) The number of rows need to

equal to the number of MCMC chains used for G-R convergence test. Please refer to step 5

for more information. (d) Check the default values for each parameter are within its
parameter range.
If users prepare a namlist.txt by hand, the checks in step3 will also be executed in MIDA
when namelist.txt is loaded in the below panel.
Whenever users click a button, what happened behind in MIDA will be print in the other
window (a black terminal). Figure below is an example of print information when a new

namelist.txt is generated in MIDA. Detail errors will also be print to help users to debug.

< FA\Lab\Work\MIDA\tst- pipenvi Release\ main.exe
g the paramfFile file format (F:/Lab/Work/MIDA/tst-pipenv/Release/param.c

ng whether model executable {
run: Mo error
g the work path
g the file format
g the file format

Run DA. If users click ‘Run DA’ button, the main window will be frozen, and users cannot

type anything in this window. Information about the process of DA will be print out in the

terminal.

<5 FiLab\Work\MIDANtst- pipenvi Releasemain.exe - O >

ccepted=3 mismatch=
cepted=4 mi

epted=1 mism
fails to get
epted=1 mism
fails to get
epted=1 misma
ccepted=1 mismatc
fails to get a
fails to get
epted=1 misma
ccepted=1 mismatch
fails to get a
fails to get
epted=1 misma 1 cceptRate=8.12
ccepted=1 mismatch=783.4249 . 3 ptRate=08.111
= 2 eptRate=0.1

ils to get

pted=1 mismatch=244.87¢ 8 acceptRate=8.898982909090989891
1s to get a new s

pted=1 mi oy

a new
get a new reasonable value

In the figure above, nsimu is the number of simulations executed so far and accepted is the
number of simulations accepted. The acceptRate=accepted/nsimu. Generally, acceptRate is
20%~40%. ‘i-th param fails to get a new reasonable value’ means the new value of the i-th
parameter is not within its parameter range. Then, MIDA will re-generate new parameter values
until all parameters are reasonable. If users want to stop DA, users need to select the black
terminal where print information is popping out and type CTLR+C. This hot key will terminate
the execution of DA without exiting MIDA.

A G-R convergence test requires to run multiple MCMC chains. In the namelist.txt,
nChains_ConvergeTest is the number of MCMC chains and nChains_ConvergeTest=0 indicates
no convergence test. convergeTest_startsFile is the csv file which saves the default values of
parameters as the start points in multiple MCMC chains. After G-R convergence test, the G-R
estimators will be saved in a file indicated as outConvergenceTest. All DA outputs will be saved

in the DAresult/ folder in the work path as indicated in namelist.txt.

7. Visualization. Generally, there will be two figures generated: posterior distribution of
parameters and the mismatches between observations and simulation outputs during DA. If

convergence test is used, the number of figures = 2*number of MCMC chains + 1

Windows - Command line version

1. Prepare namelist.txt and printDA.csv and place them at the same folder as MIDA.exe.
printDA.csv indicates what information (totally there are five choices) will be printed in each
iteration during DA. For example, the mismatches between observations and simulation
outputs. Specially, users must select at least one to be print in printDA.csv.

2. Open a windows command terminal, navigate to the location of MIDA.exe and type

‘MIDA.exe’ to start MIDA

EX Command Prompt

reserved.

C:\Users\Xin>f:
F:\»cd F:\Lab\Work\MIDA\MIDA-release\Windows\Command\Example

F:\Lab\Work\MIDA\MIDA-release\Windows\Command\Example>MIDA.exe

3. MIDA will automatically read namelist.txt, conduct DA and visualize DA results. If
display_plot in namelist.txt is 1, plots will be visualized in new windows. If display_plot has
a value of 0, MIDA will save plots to DAresults/ folder. Users may use the plotScript.py to
plot DA results without MIDA (Type ‘python plotScript.py’ in the terminal). In this case,

users need to install numpy, pandas, and matplolib Python packages before using

plotScript.py. All information regarding to DA in MIDA (e.g., checking file formats before
DA and the ratio of accepted simulation during DA) will be printed in the terminal to help
users to debug.

4. Please enter to exit MIDA.

Mac - Graphic version

1. Make sure the model and MIDA is executable. Users may directly type the commands below

in mac terminal to make model and MIDA to be executable.

2. Make sure model executable is able to run properly before using MIDA. Type the command
below to check whether no error occurs, and the simulation outputs are just generated.

Otherwise, users may encounter more errors in the following steps.

3. Different from windows-graphic version, users with Mac have to type ‘./MIDA'’ to start

MIDA in the terminal. Two windows will generate: one is the main window and the other is

the terminal.

4. The following steps are similar to those in windows-Graphic MIDA.

Mac - Command line version

1. Similar to Mac-graphic version, users need to make sure model and MIDA are executable.
Moreover, model executable can run accurately before MIDA (Please see step 1 in Mac-

Graphic section to get more detailed information)

2. Similar to Windows-command version, users need to prepare a namelist.txt and printDA.csv
and place them under the same folder of MIDA (Please see step 1 in Windows-Command
section to get more detailed information)

3. In the terminal, navigate to the folder of MIDA executable, type *./MIDA’ to start MIDA.
MIDA will automatically read namelist.txt and related data, conduct DA and visualize DA
results. If display_plot in namelist.txt is 1, plots will be visualized in new windows. If
display_plot has a value of 0, MIDA will save plots to DAresults/ folder.

4. After that, type anything to exit MIDA.

Linux — Command line version

1. Install Python 3.x, and related packages (i.e., numpy, pandas, and matplotlib)

2. Similar to Windows/Mac, make sure model is executable and is able to run correctly before
using MIDA

3. Prepare a namelist.txt and printDA.csv and place them under the same folder of main.py.
Please refer to Windows-Command section to get more information of printDA.csv.

4. If ‘python’ command triggers python 3.x, type ‘python main.py’ to start MIDA. The

workflow is same as the above command-versions in Windows/Mac.

